Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834733

RESUMEN

Neurodegenerative disorders are characterised by progressive neuron loss in specific brain areas. The most common are Alzheimer's disease and Parkinson's disease; in both cases, diagnosis is based on clinical tests with limited capability to discriminate between similar neurodegenerative disorders and detect the early stages of the disease. It is common that by the time a patient is diagnosed with the disease, the level of neurodegeneration is already severe. Thus, it is critical to find new diagnostic methods that allow earlier and more accurate disease detection. This study reviews the methods available for the clinical diagnosis of neurodegenerative diseases and potentially interesting new technologies. Neuroimaging techniques are the most widely used in clinical practice, and new techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have significantly improved the diagnosis quality. Identifying biomarkers in peripheral samples such as blood or cerebrospinal fluid is a major focus of the current research on neurodegenerative diseases. The discovery of good markers could allow preventive screening to identify early or asymptomatic stages of the neurodegenerative process. These methods, in combination with artificial intelligence, could contribute to the generation of predictive models that will help clinicians in the early diagnosis, stratification, and prognostic assessment of patients, leading to improvements in patient treatment and quality of life.


Asunto(s)
Enfermedad de Alzheimer , Medicina de Precisión , Humanos , Inteligencia Artificial , Calidad de Vida , Enfermedad de Alzheimer/patología , Diagnóstico Precoz , Biomarcadores/líquido cefalorraquídeo
2.
Methods Cell Biol ; 176: 217-234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37164539

RESUMEN

Autophagy is an intracellular catabolic pathway that allows proteins, organelles, and pathogens to be recycled. Thus, it is crucial to maintain cell homeostasis, especially important in post-mitotic cells as neurons that cannot dilute cellular damage through mitosis. In the last decade, autophagy has been connected to the primary cilium (PC), a small organelle that acts as a sensory hub and is present in most cell types, including astrocytes and neurons. In this chapter, we briefly describe the state-of-the-art of the interplay between autophagy, PC, and its implications for the brain, in healthy and pathophysiological conditions. Deregulations in autophagy can be monitored by numerous assays, both in vivo and in vitro, and so do changes in PC length/number. Here, we relate a practical and user-friendly description of immunofluorescence methods to study autophagy and PC changes in brain slices, including the tissue preparation, confocal microscopy, image analysis, and deconvolution process.


Asunto(s)
Autofagia , Encéfalo , Cilios , Técnica del Anticuerpo Fluorescente , Encéfalo/citología , Cilios/fisiología , Técnica del Anticuerpo Fluorescente/métodos , Microscopía Confocal , Humanos , Animales , Procesamiento de Imagen Asistido por Computador , Conservación de Tejido
3.
Autophagy ; 19(7): 1952-1981, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36622892

RESUMEN

Microglial phagocytosis of apoptotic debris prevents buildup damage of neighbor neurons and inflammatory responses. Whereas microglia are very competent phagocytes under physiological conditions, we report their dysfunction in mouse and preclinical monkey models of stroke (macaques and marmosets) by transient occlusion of the medial cerebral artery (tMCAo). By analyzing recently published bulk and single cell RNA sequencing databases, we show that the phagocytosis dysfunction was not explained by transcriptional changes. In contrast, we demonstrate that the impairment of both engulfment and degradation was related to energy depletion triggered by oxygen and nutrient deprivation (OND), which led to reduced process motility, lysosomal exhaustion, and the induction of a protective macroautophagy/autophagy response in microglia. Basal autophagy, in charge of removing and recycling intracellular elements, was critical to maintain microglial physiology, including survival and phagocytosis, as we determined both in vivo and in vitro using pharmacological and transgenic approaches. Notably, the autophagy inducer rapamycin partially prevented the phagocytosis impairment induced by tMCAo in vivo but not by OND in vitro, where it even had a detrimental effect on microglia, suggesting that modulating microglial autophagy to optimal levels may be a hard to achieve goal. Nonetheless, our results show that pharmacological interventions, acting directly on microglia or indirectly on the brain environment, have the potential to recover phagocytosis efficiency in the diseased brain. We propose that phagocytosis is a therapeutic target yet to be explored in stroke and other brain disorders and provide evidence that it can be modulated in vivo using rapamycin.Abbreviations: AIF1/IBA1: allograft inflammatory factor 1; AMBRA1: autophagy/beclin 1 regulator 1; ATG4B: autophagy related 4B, cysteine peptidase; ATP: adenosine triphosphate; BECN1: beclin 1, autophagy related; CASP3: caspase 3; CBF: cerebral blood flow; CCA: common carotid artery; CCR2: chemokine (C-C motif) receptor 2; CIR: cranial irradiation; Csf1r/v-fms: colony stimulating factor 1 receptor; CX3CR1: chemokine (C-X3-C motif) receptor 1; DAPI: 4',6-diamidino-2-phenylindole; DG: dentate gyrus; GO: Gene Ontology; HBSS: Hanks' balanced salt solution; HI: hypoxia-ischemia; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MCA: medial cerebral artery; MTOR: mechanistic target of rapamycin kinase; OND: oxygen and nutrient deprivation; Ph/A coupling: phagocytosis-apoptosis coupling; Ph capacity: phagocytic capacity; Ph index: phagocytic index; SQSTM1: sequestosome 1; RNA-Seq: RNA sequencing; TEM: transmission electron microscopy; tMCAo: transient medial cerebral artery occlusion; ULK1: unc-51 like kinase 1.


Asunto(s)
Autofagia , Accidente Cerebrovascular , Animales , Ratones , Autofagia/fisiología , Microglía/metabolismo , Beclina-1/metabolismo , Fagocitosis/genética , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/metabolismo , Oxígeno/farmacología , Sirolimus/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA