Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brain ; 146(9): 3783-3799, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36928391

RESUMEN

Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that affects motor neurons in the spinal cord, brainstem and motor cortex, leading to paralysis and eventually to death within 3-5 years of symptom onset. To date, no cure or effective therapy is available. The role of chronic endoplasmic reticulum stress in the pathophysiology of amyotrophic lateral sclerosis, as well as a potential drug target, has received increasing attention. Here, we investigated the mode of action and therapeutic effect of the endoplasmic reticulum-resident protein cerebral dopamine neurotrophic factor in three preclinical models of amyotrophic lateral sclerosis, exhibiting different disease development and aetiology: (i) the conditional choline acetyltransferase-tTA/TRE-hTDP43-M337V rat model previously described; (ii) the widely used SOD1-G93A mouse model; and (iii) a novel slow-progressive TDP43-M337V mouse model. To specifically analyse the endoplasmic reticulum stress response in motor neurons, we used three main methods: (i) primary cultures of motor neurons derived from embryonic Day 13 embryos; (ii) immunohistochemical analyses of spinal cord sections with choline acetyltransferase as spinal motor neuron marker; and (iii) quantitative polymerase chain reaction analyses of lumbar motor neurons isolated via laser microdissection. We show that intracerebroventricular administration of cerebral dopamine neurotrophic factor significantly halts the progression of the disease and improves motor behaviour in TDP43-M337V and SOD1-G93A rodent models of amyotrophic lateral sclerosis. Cerebral dopamine neurotrophic factor rescues motor neurons in vitro and in vivo from endoplasmic reticulum stress-associated cell death and its beneficial effect is independent of genetic disease aetiology. Notably, cerebral dopamine neurotrophic factor regulates the unfolded protein response initiated by transducers IRE1α, PERK and ATF6, thereby enhancing motor neuron survival. Thus, cerebral dopamine neurotrophic factor holds great promise for the design of new rational treatments for amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Ratones , Ratas , Animales , Esclerosis Amiotrófica Lateral/metabolismo , Endorribonucleasas/metabolismo , Endorribonucleasas/farmacología , Endorribonucleasas/uso terapéutico , Superóxido Dismutasa-1/genética , Colina O-Acetiltransferasa/metabolismo , Colina O-Acetiltransferasa/farmacología , Colina O-Acetiltransferasa/uso terapéutico , Dopamina/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Neuronas Motoras/metabolismo , Estrés del Retículo Endoplásmico , Factores de Crecimiento Nervioso/metabolismo
2.
J Med Chem ; 67(7): 5421-5436, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38546708

RESUMEN

A series of novel 5-aminothiazole-based ligands for prolyl oligopeptidase (PREP) comprise selective, potent modulators of the protein-protein interaction (PPI)-mediated functions of PREP, although they are only weak inhibitors of the proteolytic activity of PREP. The disconnected structure-activity relationships are significantly more pronounced for the 5-aminothiazole-based ligands than for the earlier published 5-aminooxazole-based ligands. Furthermore, the stability of the 5-aminothiazole scaffold allowed exploration of wider substitution patterns than that was possible with the 5-aminooxazole scaffold. The intriguing structure-activity relationships for the modulation of the proteolytic activity and PPI-derived functions of PREP were elaborated by presenting a new binding site for PPI modulating PREP ligands, which was initially discovered using molecular modeling and later confirmed through point mutation studies. Our results suggest that this new binding site on PREP is clearly more important than the active site of PREP for the modulation of its PPI-mediated functions.


Asunto(s)
Prolil Oligopeptidasas , Serina Endopeptidasas , Tiazoles , Prolil Oligopeptidasas/metabolismo , Serina Endopeptidasas/metabolismo , Ligandos , Sitios de Unión
3.
Sci Transl Med ; 15(691): eabq2915, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37043557

RESUMEN

Tauopathies are neurodegenerative diseases that are characterized by accumulation of hyperphosphorylated tau protein, higher-order aggregates, and tau filaments. Protein phosphatase 2A (PP2A) is a major tau dephosphorylating phosphatase, and a decrease in its activity has been demonstrated in tauopathies, including Alzheimer's disease. Prolyl oligopeptidase is a serine protease that is associated with neurodegeneration, and its inhibition normalizes PP2A activity without toxicity under pathological conditions. Here, we assessed whether prolyl oligopeptidase inhibition could protect against tau-mediated toxicity in cellular models in vitro and in the PS19 transgenic mouse model of tauopathy carrying the human tau-P301S mutation. We show that inhibition of prolyl oligopeptidase with the inhibitor KYP-2047 reduced tau aggregation in tau-transfected HEK-293 cells and N2A cells as well as in human iPSC-derived neurons carrying either the P301L or tau-A152T mutation. Treatment with KYP-2047 resulted in increased PP2A activity and activation of autophagic flux in HEK-293 cells and N2A cells and in patient-derived iNeurons, as indicated by changes in autophagosome and autophagy receptor markers; this contributed to clearance of insoluble tau. Furthermore, treatment of PS19 transgenic mice for 1 month with KYP-2047 reduced tau burden in the brain and cerebrospinal fluid and slowed cognitive decline according to several behavioral tests. In addition, a reduction in an oxidative stress marker was seen in mouse brains after KYP-2047 treatment. This study suggests that inhibition of prolyl oligopeptidase could help to ameliorate tau-dependent neurodegeneration.


Asunto(s)
Prolil Oligopeptidasas , Tauopatías , Ratones , Humanos , Animales , Células HEK293 , Tauopatías/metabolismo , Proteínas tau/metabolismo , Ratones Transgénicos , Serina Endopeptidasas/metabolismo , Inhibidores Enzimáticos , Modelos Animales de Enfermedad
4.
Neuropharmacology ; 218: 109213, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35964686

RESUMEN

Parkinson's disease (PD) is characterized by degeneration of nigrostriatal dopaminergic neurons and accumulation of α-synuclein (αSyn) as Lewy bodies. Currently, there is no disease-modifying therapy available for PD. We have shown that a small molecular inhibitor for prolyl oligopeptidase (PREP), KYP-2047, relieves αSyn-induced toxicity in various PD models by inducing autophagy and preventing αSyn aggregation. In this study, we wanted to study the effects of PREP inhibition on different αSyn species by using cell culture and in vivo models. We used Neuro2A cells with transient αSyn overexpression and oxidative stress or proteasomal inhibition-induced αSyn aggregation to assess the effect of KYP-2047 on soluble αSyn oligomers and on cell viability. Here, the levels of soluble αSyn were measured by using ELISA, and the impact of KYP-2047 was compared to anle138b, nilotinib and deferiprone. To evaluate the effect of KYP-2047 on αSyn fibrillization in vivo, we used unilateral nigral AAV1/2-A53T-αSyn mouse model, where the KYP-2047 treatment was initiated two- or four-weeks post injection. KYP-2047 and anle138b protected cells from αSyn toxicity but interestingly, KYP-2047 did not reduce soluble αSyn oligomers. In AAV-A53T-αSyn mouse model, KYP-2047 reduced significantly proteinase K-resistant αSyn oligomers and oxidative damage related to αSyn aggregation. However, the KYP-2047 treatment that was initiated at the time of symptom onset, failed to protect the nigrostriatal dopaminergic neurons. Our results emphasize the importance of whole αSyn aggregation process in the pathology of PD and raise an important question about the forms of αSyn that are reasonable targets for PD drug therapy.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Supervivencia Celular , Modelos Animales de Enfermedad , Endopeptidasa K , Ratones , Enfermedad de Parkinson/tratamiento farmacológico , Prolil Oligopeptidasas
5.
Cancers (Basel) ; 12(7)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708751

RESUMEN

Natural killer (NK) cells are key cytotoxic effectors against malignant cells. Polygenic and polymorphic Killer cell Immunoglobulin-like Receptor (KIR) and HLA genes participate in the structural and functional formation of the NK cell repertoire. In this study, we extensively investigated the anti-leukemic potential of NK cell subsets, taking into account these genetic parameters and cytomegalovirus (CMV) status. Hierarchical clustering analysis of NK cell subsets based on NKG2A, KIR, CD57 and NKG2C markers from 68 blood donors identified donor clusters characterized by a specific phenotypic NK cell repertoire linked to a particular immunogenetic KIR and HLA profile and CMV status. On the functional side, acute lymphoblastic leukemia (ALL) was better recognized by NK cells than acute myeloid leukemia (AML). However, a broad inter-individual disparity of NK cell responses exists against the same leukemic target, highlighting bad and good NK responders. The most effective NK cell subsets against different ALLs expressed NKG2A and represented the most frequent subset in the NK cell repertoire. In contrast, minority CD57+ or/and KIR+ NK cell subsets were more efficient against AML. Overall, our data may help to optimize the selection of hematopoietic stem cell donors on the basis of immunogenetic KIR/HLA for ALL patients and identify the best NK cell candidates in immunotherapy for AML.

6.
Orphanet J Rare Dis ; 12(1): 107, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28569183

RESUMEN

A new approach has been designed at the Bambino Gesù Children's Hospital in Rome aimed at increasing empowerment in Williams Syndrome individuals through tutor-assisted work activities. Williams Syndrome is characterized by a combination of distinguishing physical traits, congenital anomalies, intellectual disabilities, and a specific developmental profile.This manuscript describes the case of a Williams Syndrome patient.There are only few papers in the scientific literature describing interventions targeting improvement in the quality of life of adult Williams Syndrome individuals. Therefore, this experience may prove useful to several patients, their families, and the experts helping them.We described an example of intervention aimed at guiding and facilitating a Williams Syndrome patient within a work environment, taking into consideration the peaks and valleys of these individuals' specific abilities.Based on our results, we also stressed the need to promote a set of projects and initiatives aimed at enhancing as much as possible self-sufficiency and psycho-affective balance in Williams Syndrome individuals, in order to protect their dignity and self-esteem.


Asunto(s)
Síndrome de Williams , Trabajo , Adulto , Femenino , Humanos , Italia , Perfil Laboral , Proyectos Piloto
7.
eNeuro ; 4(1)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28303260

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder associated with a progressive loss of dopaminergic (DAergic) neurons of the substantia nigra (SN) and the accumulation of intracellular inclusions containing α-synuclein. Current therapies do not stop the progression of the disease, and the efficacy of these treatments wanes over time. Neurotrophic factors (NTFs) are naturally occurring proteins promoting the survival and differentiation of neurons and the maintenance of neuronal contacts. CDNF (cerebral dopamine NTF) and GDNF (glial cell line-derived NTF) are able to protect DAergic neurons against toxin-induced degeneration in experimental models of PD. Here, we report an additive neurorestorative effect of coadministration of CDNF and GDNF in the unilateral 6-hydroxydopamine (6-OHDA) lesion model of PD in rats. NTFs were given into the striatum four weeks after unilateral intrastriatal injection of 6-OHDA (20 µg). Amphetamine-induced (2.5 mg/kg, i.p.) rotational behavior was measured every two weeks. Number of tyrosine hydroxylase (TH)-positive cells from SN pars compacta (SNpc) and density of TH-positive fibers in the striatum were analyzed at 12 weeks after lesion. CDNF and GDNF alone restored the DAergic function, and one specific dose combination had an additive effect: CDNF (2.5µg) and GDNF (1µg) coadministration led to a stronger trophic effect relative to either of the single treatments alone. The additive effect may indicate different mechanism of action for the NTFs. Indeed, both NTFs activated the survival promoting PI3 kinase (PI3K)-Akt signaling pathway, but only CDNF decreased the expression level of tested endoplasmatic reticulum (ER) stress markers ATF6, glucose-regulated protein 78 (GRP78), and phosphorylation of eukaryotic initiation factor 2α subunit (eIF2α).


Asunto(s)
Antiparkinsonianos/administración & dosificación , Factor Neurotrófico Derivado de la Línea Celular Glial/administración & dosificación , Factores de Crecimiento Nervioso/administración & dosificación , Trastornos Parkinsonianos/tratamiento farmacológico , Anfetamina/farmacología , Animales , Células Cultivadas , Estimulantes del Sistema Nervioso Central/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Sinergismo Farmacológico , Quimioterapia Combinada , Chaperón BiP del Retículo Endoplásmico , Lateralidad Funcional , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Oxidopamina , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Porción Compacta de la Sustancia Negra/efectos de los fármacos , Porción Compacta de la Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/patología , Ratas Wistar , Proteínas Recombinantes/administración & dosificación , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA