Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Molecules ; 29(19)2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39407463

RESUMEN

The oral cavity is a frequent site for head and neck cancers, which rank as the sixth most common cancer globally, with a 5-year survival rate slightly over 50%. Current treatments are limited, and resistance to therapy remains a significant clinical obstacle. IsCT1, a membrane-active peptide derived from the venom of the scorpion Opisthacanthus madagascariensis, has shown antitumor effects in various cancer cell lines, including breast cancer and chronic myeloid leukemia. However, its hemolytic action limits its potential therapeutic use. This study aims to assess the antitumor and antiproliferative activities of synthetic peptides derived from IsCT1 (IsCT-P, AC-AFPK-IsCT1, AFPK-IsCT1, AC-KKK-IsCT1, and KKK-IsCT1) in the context of oral squamous cell carcinoma. We evaluated the cytotoxic effects of these peptides on tongue squamous cell carcinoma cells and normal cells, as well as their impact on cell cycle phases, the expression of proliferation markers, modulators of cell death pathways, and mitochondrial potential. Our results indicate that the IsCT1 derivatives IsCT-P and AC-AFPK-IsCT1 possess cytotoxic properties towards squamous cell carcinoma cells, reducing mitochondrial membrane potential and the proliferative index. The treatment of cancer cells with AC-AFPK-IsCT1 led to a positive modulation of pro-apoptotic markers p53 and caspases 3 and 8, a decrease in PCNA and Cyclin D1 expression, and cell cycle arrest in the S phase. Notably, contrary to the parental IsCT1 peptide, AC-AFPK-IsCT1 did not exhibit hemolytic activity or cytotoxicity towards normal cells. Therefore, AC-AFPK-IsCT1 might be a viable therapeutic option for head and neck cancer treatment.


Asunto(s)
Antineoplásicos , Carcinoma de Células Escamosas , Proliferación Celular , Neoplasias de la Boca , Venenos de Escorpión , Humanos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Venenos de Escorpión/farmacología , Venenos de Escorpión/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Animales , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Péptidos/farmacología , Péptidos/química , Péptidos/síntesis química , Apoptosis/efectos de los fármacos , Escorpiones/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ciclo Celular/efectos de los fármacos
2.
Biomed Pharmacother ; 153: 113398, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076530

RESUMEN

Triple-negative breast cancer is the most aggressive subtype of breast cancer, with worse clinical evolution and tumor-free survival, leading to the need to develop new effective therapies for its control. The present study evaluated the action of tumor-penetrating peptide BR2 associated with 2-aminoethyl dihydrogen phosphate (2-AEH2P) on triple-negative breast tumor cells. Cell viability was evaluated by the MTT colorimetric method, mitochondrial electrical potential, and proteins involved in cell proliferation and death control were evaluated by flow cytometry and structural and morphological analysis by confocal microscopy. The results obtained showed that the peptide BR2 and the association 2-AEH2P + BR2 promoted significant cytotoxicity in tumor lines, compared to 2-AEH2P alone. In addition, the association 2-AEH2P + BR2 promoted tumor cells arrest in the G0/G1 phases. Interestingly, both treatments modulated the expression of markers CD44, CD34, CD24, cyclin D1, and Bcl-2, increased p21, Bax, and released cytochrome c. The association proved to be more effective, providing modulation of proteins involved in cell death and senescence, more pronounced cytotoxicity for tumor cells compared to normal cells, and the reduction of markers related to aggressiveness profile, progression, and tumor metastasis.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Fosfatos , Neoplasias de la Mama Triple Negativas/patología
3.
Eur J Med Chem ; 241: 114624, 2022 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-35933786

RESUMEN

Chagas disease is caused by the parasite Trypanosoma cruzi and affects millions of people worldwide, having no effective cure. The main sanitary emergency is related to patients with chronic infection, which accumulate comorbidities causing patient death. However, actual chemotherapeutic treatments do not effectively address the chronic forms of the disease. Invertebrates are a relevant source of antimicrobial peptides (AMPs) as part of the innate immune system for their protection. The AMP M-PONTX-Dq3a, isolated from the Dinoponera quadriceps ant venom, has shown very effective antimicrobial and trypanocidal activities. Although M-PONTX-Dq3a has better activity that the current therapies, the peptide length has limited its possibilities to reach clinical application. In this investigation, we aimed to dissect the trypanocidal effect of M-PONTX-Dq3a fragments and to study the activity of substituted analogs, to improve not only peptide trypanocidal activity and bioavailability, but also production costs. Our studies have led to the identification of two smaller peptides, M-PONTX-Dq3a [1-15] and [Lys]3-M-PONTX-Dq3a [3-153-15 with similar trypanocidal activities that the parent peptide has against the three forms of T. cruzi benznidazole-resistant Y strain. Both peptides represent promising candidates to develop novel and effective trypanocidal bio-therapeutic agents, opening new avenues for the treatment of chronic patients.


Asunto(s)
Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Enfermedad de Chagas/tratamiento farmacológico , Humanos , Péptidos/farmacología , Péptidos/uso terapéutico , Tripanocidas/uso terapéutico , Ponzoñas
4.
Eur J Pharm Sci ; 136: 104952, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31181304

RESUMEN

Antimicrobial peptides (AMPs) are biologically active molecules with a broad-spectrum activity against a myriad of microorganisms. Aside from their antimicrobial functions, AMPs present physicochemical and structural properties that allow them to exert activity against other kind of cells, such as cancer cells. VmCT1 is a potent cationic amphipathic AMP from the venom of the scorpion Vaejovis mexicanus. In this study, we designed lysine-substituted VmCT1 analogs for verifying the influence of changes in the net positive charge on biological activities. The increase in the net positive charge caused by lysine substitutions in the hydrophilic portion, led to higher antimicrobial activity values (0.1-6.3 µmol L-1) than VmCT1 (0.8-50 µmol L-1) and higher activity against mammary cancer cells MCF-7 (6.3-12.5 µmol L-1) than VmCT1 (12.5 µmol L-1). Contrarily, when lysine-substitutions were made at the hydrophobic portion of the helical projection, the activity values decreased. However, the lysine-substitution at the center of the hydrophobic face led to the generation of an analog with antiplasmodial activity at the same concentration presented by VmCT1 (0.8 µmol L-1). In this study, we demonstrated that it is possible to modulate biological activities and cytotoxicity of VmCT1 peptides by increasing their net positive charge using lysine residues, thus creating alternatives for standard-of-care therapeutics against different types of microorganisms and MCF-7 human breast cancer cells.


Asunto(s)
Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Lisina/química , Venenos de Escorpión/química , Escorpiones/química , Animales , Línea Celular Tumoral , Dicroismo Circular/métodos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Células MCF-7 , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA