Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38753088

RESUMEN

PURPOSE: Our objective is to predict the cumulative live birth rate (CLBR) and identify the specific subset within the population undergoing preimplantation genetic testing for monogenic disorders (PGT-M) and chromosomal structural rearrangements (PGT-SR) which is likely to exhibit a diminished expected CLBR based on various patient demographics. METHODS: We performed a single-centre retrospective cohort study including 1522 women undergoing 3130 PGT cycles at a referral centre for PGT. A logistic regression analysis was performed to predict the CLBR per ovarian stimulation in women undergoing PGT-M by polymerase chain reaction (PCR) or single-nucleotide polymorphism (SNP) array, and in women undergoing PGT-SR by SNP array, array comparative genomic hybridization (CGH) or next-generation sequencing (NGS). RESULTS: The mean age of women was 32.6 years, with a mean AMH of 2.75 µg/L. Female age and AMH significantly affected the expected CLBR irrespective of the inheritance mode or PGT technology. An expected CLBR < 10% was reached above the age of 42 years and AMH ≤ 1.25 µg/L. We found no significant difference in outcome per ovarian stimulation between the different PGT technologies, i.e. PCR, SNP array, array CGH and NGS. Whereas per embryo transfer, we noticed a significantly higher probability of live birth when SNP array, array CGH and NGS were used as compared to PCR. CONCLUSION: In a PGT-setting, couples with an unfavourable female age and AMH should be informed of the prognosis to allow other reproductive choices. The heatmap produced in this study can be used as a visual tool for PGT couples.

2.
Reprod Biol Endocrinol ; 21(1): 87, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737174

RESUMEN

BACKGROUND: Studies show conflicting results on neonatal outcomes following embryo biopsy for PGT, primarily due to small sample sizes and/or heterogeneity in the timing of embryo biopsy (day 3; EBD3 or day 5/6; EBD5) and type of embryo transfer. Even fewer data exist on the impact on children's health beyond the neonatal period. This study aimed to explore outcomes in children born after EBD3 or EBD5 followed by fresh (FRESH) or frozen-thawed embryo transfer (FET). METHODS: This single-centre cohort study compared birth data of 630 children after EBD3, of 222 EBD5 and of 1532 after non-biopsied embryo transfers performed between 2014 and 2018. Follow-up data on growth were available for 426, 131 and 662 children, respectively. RESULTS: Embryo biopsy, either at EBD3 or EBD5 in FET and FRESH cycles did not negatively affect anthropometry at birth, infancy or childhood compared to outcomes in non-biopsied FET and FRESH cycles. While there was no adverse effect of the timing of embryo biopsy (EBD3 versus EBD5), children born after EBD3 followed by FET had larger sizes at birth, but not thereafter, than children born after EBD3 followed by FRESH. Reassuringly, weight and height gain, proportions of major congenital malformations, developmental problems, hospital admissions and surgical interventions were similar between comparison groups. CONCLUSION: Our study indicated that neither EBD3 nor EBD5 followed by FRESH or FET had a negative impact on anthropometry and on health outcomes up to 2 years of age.


Asunto(s)
Blastocisto , Embrión de Mamíferos , Recién Nacido , Niño , Humanos , Estudios de Cohortes , Biopsia/efectos adversos , Antropometría
3.
Prenat Diagn ; 43(4): 506-515, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36371615

RESUMEN

OBJECTIVE: Genomics Quality Assessment has provided external quality assessments (EQAs) for preimplantation genetic testing (PGT) for 12 years for eight monogenic diseases to identify sub-optimal PGT strategies, testing and reporting of results, which can be shared with the genomics community to aid optimised standards of PGT services for couples. METHOD: The EQAs were provided in two stages to mimic end-to-end protocols. Stage 1 involved DNA feasibility testing of a couple undergoing PGT and affected proband. Participants were required to report genotyping results and outline their embryo testing strategy. Lymphoblasts were distributed for mock embryo testing for stage 2. Submitted clinical reports and haplotyping results were assessed against peer-ratified criteria. Performance was monitored to identify poor performance. RESULTS: The most common testing methodology was short tandem repeat linkage analysis (59%); however, the adoption of single nucleotide polymorphism-based platforms was observed and a move from blastomere to trophectoderm testing. There was a variation in testing strategies, assigning marker informativity and understanding test limitations, some clinically unsafe. Critical errors were reported for genotyping and interpretation. CONCLUSION: EQA provides an overview of the standard of preimplantation genetic testing-M clinical testing and identifies areas of improvement for accurate detection of high-risk embryos.


Asunto(s)
Diagnóstico Preimplantación , Embarazo , Femenino , Humanos , Diagnóstico Preimplantación/métodos , Pruebas Genéticas/métodos , Blastocisto , Aneuploidia
4.
Reprod Biomed Online ; 44(3): 459-468, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34930679

RESUMEN

RESEARCH QUESTION: Can (mosaic) aneuploidy be reliably detected in preimplantation embryos after multiple displacement amplification and single nucleotide polymorphism detection, independent of haplotyping and copy number detection, with a new method 'analysis of parental contribution for aneuploidy detection' or 'APCAD'? DESIGN: This method is based on the maternal contribution, a parameter that reflects the proportion of DNA that is of maternal origin for a given chromosome or chromosome segment. A maternal contribution deviating from 50% for autosomes is strongly indicative of a (mosaic) chromosomal anomaly. The method was optimized using cell mixtures with varying ratios of euploid and aneuploid (47,XY,+21) lymphocytes. Next, the maternal contribution was retrospectively measured for all chromosomes from 349 Karyomapping samples. RESULTS: Retrospective analysis showed a skewed maternal contribution (<36.4 or >63.6%) in 57 out of 59 autosome meiotic trisomies and all autosome monosomies (n = 57), with values close to theoretical expectation. Thirty-two out of 7436 chromosomes, for which no anomalies had been observed with Karyomapping, showed a similarly skewed maternal contribution. CONCLUSIONS: APCAD was used to measure the maternal contribution, which is an intuitive parameter independent of copy number detection. This method is useful for detecting copy number neutral anomalies and can confirm diagnosis of (mosaic) aneuploidy detected based on copy number. Mosaic and complete aneuploidy can be distinguished and the parent of origin for (mosaic) chromosome anomalies can be determined. Because of these benefits, the APCAD method has the potential to improve aneuploidy detection carried out by comprehensive preimplantation genetic testing methods.


Asunto(s)
Mosaicismo , Diagnóstico Preimplantación , Aneuploidia , Blastocisto , Femenino , Pruebas Genéticas/métodos , Humanos , Padres , Embarazo , Diagnóstico Preimplantación/métodos , Estudios Retrospectivos
5.
Hum Reprod ; 35(11): 2488-2496, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33047114

RESUMEN

STUDY QUESTION: Does double vitrification and warming of human blastocysts having undergone biopsy once or twice have an impact on the clinical outcome? SUMMARY ANSWER: The clinical pregnancy rate obtained with double vitrification single biopsy blastocysts was comparable to that obtained with single vitrification single biopsy blastocysts in our center in the same time period (46%; 2016-2018), whereas that obtained with double-vitrified double-biopsied blastocysts seemed lower and will need further study. WHAT IS KNOWN ALREADY: Genetic testing on cryopreserved unbiopsied embryos involves two cryopreservation procedures. Retesting of failed/inconclusive-diagnosed blastocysts inevitably involves a second round of biopsy and a second round of vitrification as well. To what extent this practice impacts on the developmental potential of blastocysts has been studied to a limited extent so far and holds controversy. Additionally, the obstetrical/perinatal outcome after the transfer of double-vitrified/single or double-biopsied blastocysts is poorly documented. STUDY DESIGN, SIZE, DURATION: This retrospective observational study included 97 cycles of trophectoderm biopsy and preimplantation genetic testing (PGT) on vitrified-warmed embryos followed by a second round of vitrification between March 2015 and December 2019. PARTICIPANTS/MATERIALS, SETTING, METHODS: In 36 warming cycles, no biopsy was performed on the embryos before the first vitrification (single biopsy group). In 61 warming cycles, the embryos had been biopsied on Day 3 (n = 4) or on Day 5/6 (n = 57) before the first vitrification (double biopsy group). A second biopsy was mostly indicated in cycles of failed or inconclusive diagnosis at the first biopsy. Two cycles involved a more specific mutation test for X-linked diseases on male embryos and one cycle involved testing for a second monogenic indication supplementary to a previously tested reciprocal translocation. Post-warming suitability for biopsy, availability of genetically transferable embryos and clinical outcome of subsequent frozen-thawed embryo transfer (FET) cycles were reported. Neonatal follow-up of the children was included. MAIN RESULTS AND THE ROLE OF CHANCE: In total, 91 cleavage-stage embryos and 154 blastocysts were warmed, of which 34 (37.4%) and 126 (81.8%), respectively, were of sufficient quality to undergo trophectoderm biopsy and were subsequently vitrified for a second time. Out of these, 92 underwent biopsy for the first time (single biopsy), whereas 68 underwent a second biopsy (double biopsy). After diagnosis, 77 blastocysts (48.1%) were revealed to be genetically transferable (44 in the single biopsy group and 33 in the double biopsy group). In 46 warming cycles, 51 blastocysts were warmed and 49 survived this second warming procedure (96.0%). Subsequently, there were 45 FET cycles resulting in 27 biochemical pregnancies and 18 clinical pregnancies with fetal heartbeat (40.0% per FET cycle: 44.0% in the single biopsy group and 35.0% in the double biopsy group, P = 0.54). Thirteen singletons were born (eight in the single biopsy group and five in the double biopsy group), while three pregnancies were ongoing. A total of 26 embryos (13 in each group) remain vitrified and have the potential to increase the final clinical pregnancy rate. The neonatal follow-up of the children born so far is reassuring. LIMITATIONS, REASONS FOR CAUTION: This is a small retrospective cohort, thus, the implantation potential of double vitrification double biopsy blastocysts, as compared to double vitrification single biopsy blastocysts and standard PGT (single vitrification, single biopsy), certainly needs further investigation. Although one could speculate on birthweight being affected by the number of biopsies performed, the numbers in this study are too small to compare birthweight standard deviation scores in singletons born after single or double biopsy. WIDER IMPLICATIONS OF THE FINDINGS: PGT on vitrified-warmed embryos, including a second vitrification-warming step, results in healthy live birth deliveries, for both single- and double-biopsied embryos. The neonatal follow-up of the 13 children born so far did not indicate any adverse effect. The present study is important in order to provide proper counseling to couples on their chance of a live birth per initial warming cycle planned and concerning the safety issue of rebiopsy and double vitrification. STUDY FUNDING/COMPETING INTEREST(S): None. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Técnicas de Cultivo de Embriones , Vitrificación , Biopsia , Blastocisto , Niño , Criopreservación , Femenino , Estudios de Seguimiento , Humanos , Recién Nacido , Masculino , Embarazo , Índice de Embarazo , Estudios Retrospectivos
6.
Reproduction ; 160(5): A45-A58, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33112789

RESUMEN

Thirty years of rapid technological advances in the field of genetic testing and assisted reproduction have reshaped the procedure of preimplantation genetic testing (PGT). The development of whole genome amplification and genome-wide testing tools together with the implementation of optimal hormonal stimulation protocols and more efficient cryopreservation methods have led to more accurate diagnoses and improved clinical outcomes. In addition, the shift towards embryo biopsy at day 5/6 has changed the timeline of a typical PGT clinical procedure. In this paper, we present an up-to-date overview of the different steps in PGT from patient referral to baby follow-up.


Asunto(s)
Aberraciones Cromosómicas , Enfermedades Fetales/diagnóstico , Enfermedades Genéticas Congénitas/diagnóstico , Pruebas Genéticas/métodos , Diagnóstico Preimplantación/métodos , Femenino , Enfermedades Fetales/genética , Enfermedades Genéticas Congénitas/embriología , Enfermedades Genéticas Congénitas/genética , Humanos , Embarazo
7.
Am J Hum Genet ; 96(6): 894-912, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25983246

RESUMEN

Methods for haplotyping and DNA copy-number typing of single cells are paramount for studying genomic heterogeneity and enabling genetic diagnosis. Before analyzing the DNA of a single cell by microarray or next-generation sequencing, a whole-genome amplification (WGA) process is required, but it substantially distorts the frequency and composition of the cell's alleles. As a consequence, haplotyping methods suffer from error-prone discrete SNP genotypes (AA, AB, BB) and DNA copy-number profiling remains difficult because true DNA copy-number aberrations have to be discriminated from WGA artifacts. Here, we developed a single-cell genome analysis method that reconstructs genome-wide haplotype architectures as well as the copy-number and segregational origin of those haplotypes by employing phased parental genotypes and deciphering WGA-distorted SNP B-allele fractions via a process we coin haplarithmisis. We demonstrate that the method can be applied as a generic method for preimplantation genetic diagnosis on single cells biopsied from human embryos, enabling diagnosis of disease alleles genome wide as well as numerical and structural chromosomal anomalies. Moreover, meiotic segregation errors can be distinguished from mitotic ones.


Asunto(s)
Algoritmos , Dosificación de Gen/genética , Genoma Humano/genética , Haplotipos/genética , Modelos Genéticos , Diagnóstico Preimplantación/métodos , Análisis de la Célula Individual/métodos , Aberraciones Cromosómicas , Cartilla de ADN/genética , Genotipo , Humanos , Hibridación Fluorescente in Situ , Técnicas de Amplificación de Ácido Nucleico , Polimorfismo de Nucleótido Simple/genética , Estadísticas no Paramétricas
8.
Mol Hum Reprod ; 22(8): 845-57, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27256483

RESUMEN

STUDY QUESTION: We wanted to probe the opinions and current practices on preimplantation genetic screening (PGS), and more specifically on PGS in its newest form: PGS 2.0? STUDY FINDING: Consensus is lacking on which patient groups, if any at all, can benefit from PGS 2.0 and, a fortiori, whether all IVF patients should be offered PGS. WHAT IS KNOWN ALREADY: It is clear from all experts that PGS 2.0 can be defined as biopsy at the blastocyst stage followed by comprehensive chromosome screening and possibly combined with vitrification. Most agree that mosaicism is less of an issue at the blastocyst stage than at the cleavage stage but whether mosaicism is no issue at all at the blastocyst stage is currently called into question. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: A questionnaire was developed on the three major aspects of PGS 2.0: the Why, with general questions such as PGS 2.0 indications; the How, specifically on genetic analysis methods; the When, on the ideal method and timing of embryo biopsy. Thirty-five colleagues have been selected to address these questions on the basis of their experience with PGS, and demonstrated by peer-reviewed publications, presentations at meetings and participation in the discussion. The first group of experts who were asked about 'The Why' comprised fertility experts, the second group of molecular biologists were asked about 'The How' and the third group of embryologists were asked about 'The When'. Furthermore, the geographical distribution of the experts has been taken into account. Thirty have filled in the questionnaire as well as actively participated in the redaction of the current paper. MAIN RESULTS AND THE ROLE OF CHANCE: The 30 participants were from Europe (Belgium, Germany, Greece, Italy, Netherlands, Spain, UK) and the USA. Array comparative genome hybridization is the most widely used method amongst the participants, but it is slowly being replaced by massive parallel sequencing. Most participants offering PGS 2.0 to their patients prefer blastocyst biopsy. The high efficiency of vitrification of blastocysts has added a layer of complexity to the discussion, and it is not clear whether PGS in combination with vitrification, PGS alone, or vitrification alone, followed by serial thawing and eSET will be the favoured approach. The opinions range from in favour of the introduction of PGS 2.0 for all IVF patients, over the proposal to use PGS as a tool to rank embryos according to their implantation potential, to scepticism towards PGS pending a positive outcome of robust, reliable and large-scale RCTs in distinct patient groups. LIMITATIONS, REASONS FOR CAUTION: Care was taken to obtain a wide spectrum of views from carefully chosen experts. However, not all invited experts agreed to participate, which explains a lack of geographical coverage in some areas, for example China. This paper is a collation of current practices and opinions, and it was outside the scope of this study to bring a scientific, once-and-for-all solution to the ongoing debate. WIDER IMPLICATIONS OF THE FINDINGS: This paper is unique in that it brings together opinions on PGS 2.0 from all different perspectives and gives an overview of currently applied technologies as well as potential future developments. It will be a useful reference for fertility specialists with an expertise outside reproductive genetics. LARGE SCALE DATA: none. STUDY FUNDING AND COMPETING INTERESTS: No specific funding was obtained to conduct this questionnaire.


Asunto(s)
Pruebas Genéticas/métodos , Aneuploidia , Blastocisto/citología , Blastocisto/metabolismo , Hibridación Genómica Comparativa , Implantación del Embrión , Testimonio de Experto , Femenino , Humanos , Embarazo , Diagnóstico Preimplantación/métodos
9.
Mol Reprod Dev ; 83(7): 594-605, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27163211

RESUMEN

After fertilization, the mammalian embryo undergoes epigenetic reprogramming with genome-wide DNA demethylation and subsequent remethylation. Oxidation of 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) was suggested to be an intermediate step in the DNA demethylation pathway. Other evidence, such as the stability of 5hmC in specific tissues, suggests that 5hmC constitutes a new epigenetic modification with its own biological function. Since few studies have been conducted on human material compared to animal models and species-specific epigenetic differences have been reported, we studied global DNA methylation and hydroxymethylation patterns in human in vitro preimplantation embryos using immunocytochemistry, comparing these patterns in good-quality and abnormally developing embryos. Our data showed that DNA methylation and hydroxymethylation modifications co-exist. 5mC and 5hmC signals were found in oocytes and in paternal and maternal pronuclei of zygotes, present in non-reciprocal patterns-which contrasts published data for the mouse. These two epigenetic modifications are present between Days 1 and 7 of in vitro development, with 5mC levels declining over cell divisions without noticeable remethylation during this period. A main decline in 5mC and 5hmC occurred as the embryo progressed from compaction to the blastocyst stage. No difference in (hydroxy)methylation was found between the inner cell mass and trophectoderm. When comparing normally and abnormally developing embryos, DNA (hydroxy)methylation reprogramming was abnormal in poor-quality embryos, especially during the first cleavages. Mol. Reprod. Dev. 83: 594-605, 2016 © 2016 Wiley Periodicals, Inc.


Asunto(s)
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Blastocisto/metabolismo , Metilación de ADN/fisiología , Desarrollo Embrionario/fisiología , Animales , Blastocisto/citología , Humanos , Ratones
10.
Am J Med Genet A ; 167A(10): 2306-13, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25953684

RESUMEN

Fragile X syndrome (FXS), the most common inherited intellectual disability syndrome, is caused by expansion and hypermethylation of the CGG repeat in the 5' UTR of the FMR1 gene. This expanded repeat, also known as the rare fragile site FRAXA, causes X chromosome fragility in cultured cells from patients but only when induced by perturbing pyrimidine synthesis. We performed preimplantation genetic diagnosis (PGD) on 595 blastomeres biopsied from 442 cleavage stage embryos at risk for FXS using short tandem repeat (STR) markers. In six blastomeres, from five embryos an incomplete haplotype was observed with loss of all alleles telomeric to the CGG repeat. In all five embryos, the incomplete haplotype corresponded to the haplotype carrying the CGG repeat expansion. Subsequent analysis of additional blastomeres from three embryos by array comparative genomic hybridization (aCGH) confirmed the presence of a terminal deletion with a breakpoint close to the CGG repeat in two blastomeres from one embryo. A blastomere from another embryo showed the complementary duplication. We conclude that a CGG repeat expansion at FRAXA causes X chromosome fragility in early human IVF embryos at risk for FXS.


Asunto(s)
Fragilidad Cromosómica , Embrión de Mamíferos/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/diagnóstico , Diagnóstico Preimplantación , Expansión de Repetición de Trinucleótido , Blastómeros/metabolismo , Blastómeros/patología , Sitios Frágiles del Cromosoma , Hibridación Genómica Comparativa , Embrión de Mamíferos/anomalías , Femenino , Fertilización In Vitro , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Expresión Génica , Marcadores Genéticos , Haplotipos , Humanos , Masculino , Embarazo
11.
Breast Cancer Res Treat ; 145(3): 673-81, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24748567

RESUMEN

Preimplantation genetic diagnosis (PGD) is a reproductive option for BRCA1/2 mutation carriers wishing to avoid transmission of the predisposition for hereditary breast and ovarian cancer (HBOC) to their offspring. Embryos obtained by in vitro fertilisation (IVF/ICSI) are tested for the presence of the mutation. Only BRCA-negative embryos are transferred into the uterus. The suitability and outcome of PGD for HBOC are evaluated in an observational cohort study on treatments carried out in two of Western-Europe's largest PGD centres from 2006 until 2012. Male carriers, asymptomatic female carriers and breast cancer survivors were eligible. If available, PGD on embryos cryopreserved before chemotherapy was possible. Generic PGD-PCR tests were developed based on haplotyping, if necessary combined with mutation detection. 70 Couples underwent PGD for BRCA1/2. 42/71 carriers (59.2 %) were female, six (14.3 %) of whom have had breast cancer prior to PGD. In total, 145 PGD cycles were performed. 720 embryos were tested, identifying 294 (40.8 %) as BRCA-negative. Of fresh IVF/PGD cycles, 23.9 % resulted in a clinical pregnancy. Three cycles involved PGD on embryos cryopreserved before chemotherapy; two of these women delivered a healthy child. Overall, 38 children were liveborn. Two BRCA1 carriers were diagnosed with breast cancer shortly after PGD treatment, despite negative screening prior to PGD. PGD for HBOC proved to be suitable, yielding good pregnancy rates for asymptomatic carriers as well as breast cancer survivors. Because of two cases of breast cancer shortly after treatment, maternal safety of IVF(PGD) in female carriers needs further evaluation.


Asunto(s)
Pruebas Genéticas , Neoplasias Ováricas/diagnóstico , Diagnóstico Preimplantación , Diagnóstico Prenatal , Adulto , Enfermedades Asintomáticas , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias de la Mama/diagnóstico , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Embarazo , Resultado del Embarazo
12.
Mol Hum Reprod ; 20(9): 861-74, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24994815

RESUMEN

DNA methylation is a key epigenetic modification which is essential for normal embryonic development. Major epigenetic reprogramming takes place during gametogenesis and in the early embryo; the complex DNA methylation patterns are established and maintained by DNA methyltransferases (DNMTs). However, the influence of assisted reproductive technologies (ART) on DNA methylation reprogramming enzymes has predominantly been studied in mice and less so in human oocytes and embryos. The expression and localization patterns of the four known DNMTs were analysed in human oocytes and IVF/ICSI embryos by immunocytochemistry and compared between a reference group of good quality fresh embryos and groups of abnormally developing embryos or embryo groups after cryopreservation. In humans, DNMT1o rather than DNMT1s seems to be the key player for maintaining methylation in early embryos. DNMT3b, rather than DNMT3a and DNMT3L, appears to ensure global DNA remethylation in the blastocysts before implantation. DNMT3L, an important regulator of maternal imprint methylation in mouse, was not detected in human oocytes (GV, MI and MII stage). Our study confirms the existence of species differences for mammalian DNA methylation enzymes. In poor quality fresh embryos, the switch towards nuclear DNMT3b expression was delayed and nuclear DNMT1, DNMT1s and DNMT3b expression was less common. Compared with the reference embryos, a smaller number of cryopreserved embryos showed nuclear DNMT1, while a delayed switch to nuclear DNMT3b and an extended DNMT1s temporal expression pattern were also observed. The spatial and temporal expression patterns of DNMTs seem to be disturbed in abnormally developing embryos and in embryos that have been cryopreserved. Further research must be performed in order to understand whether the potentially disturbed embryonic DNMT expression after cryopreservation has any long-term developmental consequences.


Asunto(s)
Blastocisto/metabolismo , Metilasas de Modificación del ADN/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Oocitos/metabolismo , Técnicas Reproductivas Asistidas , Blastocisto/citología , Blastocisto/patología , Núcleo Celular/enzimología , Núcleo Celular/metabolismo , Núcleo Celular/patología , Criopreservación , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Metilasas de Modificación del ADN/genética , Ectogénesis , Femenino , Fertilización In Vitro/efectos adversos , Humanos , Inmunohistoquímica , Infertilidad Femenina/metabolismo , Infertilidad Femenina/patología , Isoenzimas/genética , Isoenzimas/metabolismo , Oocitos/citología , Oocitos/patología , ARN Mensajero/metabolismo , Técnicas Reproductivas Asistidas/efectos adversos , Inyecciones de Esperma Intracitoplasmáticas/efectos adversos , ADN Metiltransferasa 3B
13.
Hum Reprod Open ; 2022(4): hoac044, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36349144

RESUMEN

STUDY QUESTION: How should ART/preimplantation genetic testing (PGT) centres manage the detection of chromosomal mosaicism following PGT? SUMMARY ANSWER: Thirty good practice recommendations were formulated that can be used by ART/PGT centres as a basis for their own policy with regards to the management of 'mosaic' embryos. WHAT IS KNOWN ALREADY: The use of comprehensive chromosome screening technologies has provided a variety of data on the incidence of chromosomal mosaicism at the preimplantation stage of development and evidence is accumulating that clarifies the clinical outcomes after transfer of embryos with putative mosaic results, with regards to implantation, miscarriage and live birth rates, and neonatal outcomes. STUDY DESIGN SIZE DURATION: This document was developed according to a predefined methodology for ESHRE good practice recommendations. Recommendations are supported by data from the literature, a large survey evaluating current practice and published guidance documents. The literature search was performed using PubMed and focused on studies published between 2010 and 2022. The survey was performed through a web-based questionnaire distributed to members of the ESHRE special interest groups (SIG) Reproductive Genetics and Embryology, and the ESHRE PGT Consortium members. It included questions on ART and PGT, reporting, embryo transfer policy and follow-up of transfers. The final dataset represents 239 centres. PARTICIPANTS/MATERIALS SETTING METHODS: The working group (WG) included 16 members with expertise on the ART/PGT process and chromosomal mosaicism. The recommendations for clinical practice were formulated based on the expert opinion of the WG, while taking into consideration the published data and results of the survey. MAIN RESULTS AND THE ROLE OF CHANCE: Eighty percent of centres that biopsy three or more cells report mosaicism, even though only 66.9% of all centres have validated their technology and only 61.8% of these have validated specifically for the calling of chromosomal mosaicism. The criteria for designating mosaicism, reporting and transfer policies vary significantly across the centres replying to the survey. The WG formulated recommendations on how to manage the detection of chromosomal mosaicism in clinical practice, considering validation, risk assessment, designating and reporting mosaicism, embryo transfer policies, prenatal testing and follow-up. Guidance is also provided on the essential elements that should constitute the consent forms and the genetic report, and that should be covered in genetic counselling. As there are several unknowns in chromosomal mosaicism, it is recommended that PGT centres monitor emerging data on the topic and adapt or refine their policy whenever new insights are available from evidence. LIMITATIONS REASONS FOR CAUTION: Rather than providing instant standardized advice, the recommendations should help ART/PGT centres in developing their own policy towards the management of putative mosaic embryos in clinical practice. WIDER IMPLICATIONS OF THE FINDINGS: This document will help facilitate a more knowledge-based approach for dealing with chromosomal mosaicism in different centres. In addition to recommendations for clinical practice, recommendations for future research were formulated. Following up on these will direct research towards existing research gaps with direct translation to clinical practice. Emerging data will help in improving guidance, and a more evidence-based approach of managing chromosomal mosaicism. STUDY FUNDING/COMPETING INTERESTS: The WG received technical support from ESHRE. M.D.R. participated in the EQA special advisory group, outside the submitted work, and is the chair of the PGT WG of the Belgian society for human genetics. D.W. declared receiving salary from Juno Genetics, UK. A.C. is an employee of Igenomix, Italy and C.R. is an employee of Igenomix, Spain. C.S. received a research grant from FWO, Belgium, not related to the submitted work. I.S. declared being a Co-founder of IVFvision Ltd, UK. J.R.V. declared patents related to 'Methods for haplotyping single-cells' and 'Haplotyping and copy number typing using polymorphic variant allelic frequencies', and being a board member of Preimplantation Genetic Diagnosis International Society (PGDIS) and International Society for Prenatal Diagnosis (ISPD). K.S. reported being Chair-elect of ESHRE. The other authors had nothing to disclose. DISCLAIMER: This Good Practice Recommendations (GPR) document represents the views of ESHRE, which are the result of consensus between the relevant ESHRE stakeholders and are based on the scientific evidence available at the time of preparation.  ESHRE GPRs should be used for information and educational purposes. They should not be interpreted as setting a standard of care or be deemed inclusive of all proper methods of care, or be exclusive of other methods of care reasonably directed to obtaining the same results. They do not replace the need for application of clinical judgement to each individual presentation, or variations based on locality and facility type.  Furthermore, ESHRE GPRs do not constitute or imply the endorsement, or favouring, of any of the included technologies by ESHRE.

14.
JMIR Med Inform ; 9(7): e27980, 2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34255700

RESUMEN

BACKGROUND: Participation in quality controls, also called external quality assessment (EQA) schemes, is required for the ISO15189 accreditation of the Medical Centers of Human Genetics. However, directives on the minimal frequency of participation in genetic quality control schemes are lacking or too heterogeneous, with a possible impact on health care quality. OBJECTIVE: The aim of this project is to develop Belgian guidelines on the frequency of participation in quality controls for genetic testing in the context of rare diseases. METHODS: A group of experts analyzed 90 EQA schemes offered by accredited providers and focused on analyses used for the diagnosis of rare diseases. On that basis, the experts developed practical recommendations about the minimal frequencies of participation of the Medical Centers of Human Genetics in quality controls and how to deal with poor performances and change management. These guidelines were submitted to the Belgian Accreditation Body and then reviewed and approved by the Belgian College of Human Genetics and Rare Diseases and by the National Institute for Health and Disability Insurance. RESULTS: The guidelines offer a decisional algorithm for the minimal frequency of participation in human genetics EQA schemes. This algorithm has been developed taking into account the scopes of the EQA schemes, the levels of experience, and the annual volumes of the Centers of Human Genetics in the performance of the tests considered. They include three key principles: (1) the recommended annual assessment of all genetic techniques and technological platforms, if possible through EQAs covering the technique, genotyping, and clinical interpretation; (2) the triennial assessment of the genotyping and interpretation of specific germline mutations and pharmacogenomics analyses; and (3) the documentation of actions undertaken in the case of poor performances and the participation to quality control the following year. The use of a Bayesian statistical model has been proposed to help the Centers of Human Genetics to determine the theoretical number of tests that should be annually performed to achieve a certain threshold of performance (eg, a maximal error rate of 1%). Besides, the guidelines insist on the role and responsibility of the national public health authorities in the follow-up of the quality of analyses performed by the Medical Centers of Human Genetics and in demonstrating the cost-effectiveness and rationalization of participation frequency in these quality controls. CONCLUSIONS: These guidelines have been developed based on the analysis of a large panel of EQA schemes and data collected from the Belgian Medical Centers of Human Genetics. They are applicable to other countries and will facilitate and improve the quality management and financing systems of the Medical Centers of Human Genetics.

15.
Hum Reprod ; 25(4): 821-3, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20124394

RESUMEN

Since 2004, there have been 11 randomized controlled trials (RCTs) mainly for advanced maternal age (AMA), which have shown no benefit of performing preimplantation genetic screening (PGS). Ten of the RCTs have been performed at the cleavage stage and one at the blastocyst stage. It is probable that the high levels of chromosomal mosaicism at cleavage stages, which may result in the tested cell not being representative of the embryo, and the inability to examine all of the chromosomes using fluorescence in situ hybridization, have contributed to the lack of positive outcome from the RCTs. We suggest that future RCTs should examine alternative biopsy timing (polar body and/or trophectoderm biopsy), and should apply technologies that allow more comprehensive testing to include all chromosomes (microarray-based testing) to determine if PGS shows an improvement in delivery rate. Currently there is no evidence that routine PGS is beneficial for patients with AMA and conclusive data (RCTs) on repeated miscarriage, implantation failure and severe male factor are missing. To evaluate benefits of PGS, an ESHRE trial has recently been started on patients with AMA using polar body biopsy and array-comparative genomic hybridization, which should bring more information on this patient group in the near future.


Asunto(s)
Diagnóstico Preimplantación/tendencias , Adulto , Comités Consultivos , Biopsia/métodos , Fase de Segmentación del Huevo/citología , Hibridación Genómica Comparativa , Europa (Continente) , Femenino , Humanos , Recién Nacido , Infertilidad/genética , Infertilidad/terapia , Masculino , Edad Materna , Embarazo , Diagnóstico Preimplantación/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Sociedades Médicas
16.
J Assist Reprod Genet ; 27(6): 327-33, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20221684

RESUMEN

PURPOSE: This study aims to analyze the relationship between trinucleotide repeat length and reproductive outcome in a large cohort of DM1 patients undergoing ICSI and PGD. METHODS: Prospective cohort study. The effect of trinucleotide repeat length on reproductive outcome per patient was analyzed using bivariate analysis (T-test) and multivariate analysis using Kaplan-Meier and Cox regression analysis. RESULTS: Between 1995 and 2005, 205 cycles of ICSI and PGD were carried out for DM1 in 78 couples. The number of trinucleotide repeats does not have an influence on reproductive outcome when adjusted for age, BMI, basal FSH values, parity, infertility status and male or female affected. Cox regression analysis indicates that cumulative live birth rate is not influenced by the number of trinucleotide repeats. The only factor with a significant effect is age (p < 0.05). CONCLUSION: There is no evidence of an effect of trinucleotide repeat length on reproductive outcome in patients undergoing ICSI and PGD.


Asunto(s)
Distrofia Miotónica/genética , Resultado del Embarazo/genética , Diagnóstico Preimplantación , Inyecciones de Esperma Intracitoplasmáticas , Expansión de Repetición de Trinucleótido , Repeticiones de Trinucleótidos , Femenino , Humanos , Masculino , Embarazo , Estudios Prospectivos
17.
Genes (Basel) ; 11(8)2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752000

RESUMEN

Preimplantation genetic testing (PGT) has evolved into a well-established alternative to invasive prenatal diagnosis, even though genetic testing of single or few cells is quite challenging. PGT-M is in theory available for any monogenic disorder for which the disease-causing locus has been unequivocally identified. In practice, the list of indications for which PGT is allowed may vary substantially from country to country, depending on PGT regulation. Technically, the switch from multiplex PCR to robust generic workflows with whole genome amplification followed by SNP array or NGS represents a major improvement of the last decade: the waiting time for the couples has been substantially reduced since the customized preclinical workup can be omitted and the workload for the laboratories has decreased. Another evolution is that the generic methods now allow for concurrent analysis of PGT-M and PGT-A. As innovative algorithms are being developed and the cost of sequencing continues to decline, the field of PGT moves forward to a sequencing-based, all-in-one solution for PGT-M, PGT-SR, and PGT-A. This will generate a vast amount of complex genetic data entailing new challenges for genetic counseling. In this review, we summarize the state-of-the-art for PGT-M and reflect on its future.


Asunto(s)
Enfermedades Genéticas Congénitas/diagnóstico , Pruebas Genéticas/métodos , Diagnóstico Preimplantación/métodos , Enfermedades Genéticas Congénitas/genética , Humanos , Técnicas Reproductivas Asistidas/normas , Análisis de Secuencia de ADN/métodos
18.
Hum Reprod Open ; 2020(3): hoaa021, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524036

RESUMEN

The field of preimplantation genetic testing (PGT) is evolving fast, and best practice advice is essential for regulation and standardisation of diagnostic testing. The previous ESHRE guidelines on best practice for preimplantation genetic diagnosis, published in 2005 and 2011, are considered outdated and the development of new papers outlining recommendations for good practice in PGT was necessary. The current updated version of the recommendations for good practice is, similar to the 2011 version, split into four documents, one of which covers the organisation of a PGT centre. The other documents focus on the different technical aspects of embryo biopsy, PGT for monogenic/single-gene defects (PGT-M) and PGT for chromosomal structural rearrangements/aneuploidies (PGT-SR/PGT-A). The current document outlines the steps prior to starting a PGT cycle, with details on patient inclusion and exclusion, and counselling and information provision. Also, recommendations are provided on the follow-up of PGT pregnancies and babies. Finally, some further recommendations are made on the practical organisation of an IVF/PGT centre, including basic requirements, transport PGT and quality management. This document, together with the documents on embryo biopsy, PGT-M and PGT-SR/PGT-A, should assist everyone interested in PGT in developing the best laboratory and clinical practice possible.

19.
Hum Reprod Open ; 2020(3): hoaa017, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32500102

RESUMEN

The field of preimplantation genetic testing (PGT) is evolving fast, and best practice advice is essential for regulation and standardisation of diagnostic testing. The previous ESHRE guidelines on best practice for PGD, published in 2005 and 2011, are considered outdated, and the development of new papers outlining recommendations for good practice in PGT was necessary. The current paper provides recommendations on the technical aspects of PGT for chromosomal structural rearrangements (PGT-SR) and PGT for aneuploidies (PGT-A) and covers recommendations on array-based comparative genomic hybridisation (aCGH) and next-generation sequencing (NGS) for PGT-SR and PGT-A and on fluorescence in situ hybridisation (FISH) and single nucleotide polymorphism (SNP) array for PGT-SR, including laboratory issues, work practice controls, pre-examination validation, preclinical work-up, risk assessment and limitations. Furthermore, some general recommendations on PGT-SR/PGT-A are formulated around training and general risk assessment, and the examination and post-examination process. This paper is one of a series of four papers on good practice recommendations on PGT. The other papers cover the organisation of a PGT centre, embryo biopsy and tubing and the technical aspects of PGT for monogenic/single-gene defects (PGT-M). Together, these papers should assist everyone interested in PGT in developing the best laboratory and clinical practice possible.

20.
Hum Reprod Open ; 2020(3): hoaa018, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32500103

RESUMEN

The field of preimplantation genetic testing (PGT) is evolving fast and best practice advice is essential for regulation and standardisation of diagnostic testing. The previous ESHRE guidelines on best practice for PGD, published in 2005 and 2011, are considered outdated, and the development of new papers outlining recommendations for good practice in PGT was necessary. The current paper provides recommendations on the technical aspects of PGT for monogenic/single-gene defects (PGT-M) and covers recommendations on basic methods for PGT-M and testing strategies. Furthermore, some specific recommendations are formulated for special cases, including de novo pathogenic variants, consanguineous couples, HLA typing, exclusion testing and disorders caused by pathogenic variants in the mitochondrial DNA. This paper is one of a series of four papers on good practice recommendations on PGT. The other papers cover the organisation of a PGT centre, embryo biopsy and tubing and the technical aspects of PGT for chromosomal structural rearrangements/aneuploidies. Together, these papers should assist scientists interested in PGT in developing the best laboratory and clinical practice possible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA