Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 336: 117646, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36871447

RESUMEN

The transport of excess nutrients into freshwater systems constitutes a serious risk to both water quality and aquatic health. Vegetated buffer zones (VBZs) next to waterways are increasingly used in many parts of the world to successfully intercept and eliminate pollutants and other materials in overland flow, especially in warm or temperate regions. The major processes for the retention of pollutants in VBZ are microbial degradation, infiltration, deposition, filtration, adsorption, degradation, assimilation, etc. The effectiveness of the VBZ relies on several environmental factors, including BZ width, runoff intensity, slope, soil texture, temperature, vegetation type, etc. Among the reported factors, cold weather possesses the most detrimental impact on many of the processes that VBZ are designed to carry out. The freezing temperatures result in ice formation, interrupting biological activity, infiltration and sorption, etc. In the last twenty years, burgeoning research has been carried out on the reduction of diffuse nutrient pollution losses from agricultural lands using VBZ. Nonetheless, a dearth of studies has dealt with the problems and concerns in cold climates, representing an important knowledge gap in this area. In addition, the effectiveness of VBZ in terms of nutrient removal abilities varies from -136% to 100%, a range that reveals the incertitude surrounding the role of VBZ in cold regions. Moreover, frozen soils and plants may release nutrients after undergoing several freeze-thaw cycles followed by runoff events in spring snowmelt. This review suggests that the management and design of VBZ in cold climates needs close examination, and these systems might not frequently serve as a good management approach to decrease nutrient movement.


Asunto(s)
Contaminantes del Suelo , Contaminantes Químicos del Agua , Clima Frío , Agricultura , Contaminantes del Suelo/análisis , Fósforo , Contaminantes Químicos del Agua/análisis , Suelo , Nutrientes , Nitrógeno/análisis
2.
Sci Total Environ ; 791: 148382, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34139504

RESUMEN

Seasonal rainfall events reinforce the link between terrestrial and fluvial domains and are crucial for assessing hydrological control over riverine nutrient dynamics and pollutant source behaviors, especially in a semi-arid watershed. Taking the Qingshuihe river basin, a semi-arid mountainous basin in China, as an example, this paper investigated storm effects on riverine nitrogen (N) and phosphorus (P) dynamics (i.e. concentration, load, and composition changes) through continuous sampling of four storm events of the 2019 rainy season, including one small storm, two moderate storms, and a large storm. Pollutant sources and transport pathways were then examined over the storm sequence via hysteresis analysis. The results revealed a strong linkage between N/P dynamics and hydrological processes. Storm runoff caused a 6-fold increase in particulate-P (PP) and a 4-fold increase in ammonia-N (NH4-N) fluxes through four storms (most sensitive nutrients to storms). On average, PP shared 86% of P exports, and nitrate-N (NO3-N) contributed 79% of N exports. PP and NH4-N were delivered primarily from overland sources and transported by surface runoff. Nonetheless, mobilization of channel sediment reserves was also an important way of PP supply during storms. The results suggested groundwater as the principal NO3-N source in the watershed, and subsurface flow was important for NO3-N and total dissolved-P (TDP) delivery during storms. The large storm (>20 mm) often registered the highest N/P load exports. However, there were other influencing factors/processes on stormflow N/P dynamics in the semi-arid watershed, which complicate/override the effects of different storm magnitudes. Total suspended solids (TSS)/PP source availability and inter- and intra-storm export trends influenced P behaviors through storms. Moreover, impacts of mobilization processes on NO3-N behavior appeared over the storm sequence. These findings enhance our understanding of storm events induced N/P exports in water-scarce regions and provide references for water quality predictions and control in flood seasons.


Asunto(s)
Fósforo , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Nitrógeno/análisis , Fósforo/análisis , Ríos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA