Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell ; 35(9): 3504-3521, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37440281

RESUMEN

ADAPTOR-ASSOCIATED PROTEIN KINASE1 (AAK1) is a known regulator of clathrin-mediated endocytosis in mammals. Human AAK1 phosphorylates the µ2 subunit of the ADAPTOR PROTEIN-2 (AP-2) complex (AP2M) and plays important roles in cell differentiation and development. Previous interactome studies discovered the association of AAK1 with AP-2 in Arabidopsis (Arabidopsis thaliana), but its function was unclear. Here, genetic analysis revealed that the Arabidopsis aak1 and ap2m mutants both displayed altered root tropic growth, including impaired touch- and gravity-sensing responses. In Arabidopsis, AAK1-phosphorylated AP2M on Thr-163, and expression of the phospho-null version of AP2M in the ap2m mutant led to an aak1-like phenotype, whereas the phospho-mimic forms of AP2M rescued the aak1 mutant. In addition, we found that the AAK1-dependent phosphorylation state of AP2M modulates the frequency distribution of endocytosis. Our data indicate that the phosphorylation of AP2M on Thr-163 by AAK1 fine-tunes endocytosis in the Arabidopsis root to control its tropic growth.


Asunto(s)
Subunidades mu de Complejo de Proteína Adaptadora , Arabidopsis , Raíces de Plantas , Animales , Humanos , Complejo 2 de Proteína Adaptadora/genética , Complejo 2 de Proteína Adaptadora/metabolismo , Subunidades mu de Complejo de Proteína Adaptadora/metabolismo , Arabidopsis/metabolismo , Clatrina/metabolismo , Endocitosis/genética , Mamíferos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
2.
Plant Physiol ; 195(3): 1807-1817, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38513700

RESUMEN

Signal transduction relies largely on the activity of kinases and phosphatases that control protein phosphorylation. However, we still know very little about phosphorylation-mediated signaling networks. Plant MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE KINASEs (MAP4Ks) have recently gained more attention, given their role in a wide range of processes, including developmental processes and stress signaling. We analyzed MAP4K expression patterns and mapped protein-MAP4K interactions in Arabidopsis (Arabidopsis thaliana), revealing extensive coexpression and heterodimerization. This heterodimerization is regulated by the C-terminal, intrinsically disordered half of the MAP4K, and specifically by the coiled coil motif. The ability to heterodimerize is required for proper activity and localization of the MAP4Ks. Taken together, our results identify MAP4K-interacting proteins and emphasize the functional importance of MAP4K heterodimerization. Furthermore, we identified MAP4K4/TARGET OF TEMPERATURE3 (TOT3) and MAP4K5/TOT3-INTERACTING PROTEIN 5 (TOI5) as key regulators of the transition from cell division to elongation zones in the primary root tip.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Multimerización de Proteína , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Dominios Proteicos , Fosforilación , Plantas Modificadas Genéticamente
3.
EMBO Rep ; 24(9): e54709, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37458257

RESUMEN

Endocytosis regulates the turnover of cell surface localized receptors, which are crucial for plants to rapidly respond to stimuli. The evolutionary ancient TPLATE complex (TPC) plays an essential role in endocytosis in Arabidopsis plants. Knockout or knockdown of single TPC subunits causes male sterility and seedling lethality phenotypes, complicating analysis of the roles of TPC during plant development. Partially functional alleles of TPC subunits however only cause mild developmental deviations. Here, we took advantage of the partially functional TPLATE allele, WDXM2, to investigate a role for TPC-dependent endocytosis in receptor-mediated signaling. We discovered that reduced TPC-dependent endocytosis confers a hypersensitivity to very low doses of CLAVATA3 peptide signaling. This hypersensitivity correlated with the abundance of the CLAVATA3 receptor protein kinase CLAVATA1 at the plasma membrane. Genetic and biochemical analysis as well as live-cell imaging revealed that TPC-dependent regulation of CLAVATA3-dependent internalization of CLAVATA1 from the plasma membrane is required for shoot stem cell homeostasis. Our findings provide evidence that TPC-mediated endocytosis and degradation of CLAVATA1 is a mechanism to dampen CLAVATA3-mediated signaling during plant development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Endocitosis , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal
4.
Proc Natl Acad Sci U S A ; 119(11): e2118220119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35254915

RESUMEN

SignificanceChemical genetics, which investigates biological processes using small molecules, is gaining interest in plant research. However, a major challenge is to uncover the mode of action of the small molecules. Here, we applied the cellular thermal shift assay coupled with mass spectrometry (CETSA MS) to intact Arabidopsis cells and showed that bikinin, the plant-specific glycogen synthase kinase 3 (GSK3) inhibitor, changed the thermal stability of some of its direct targets and putative GSK3-interacting proteins. In combination with phosphoproteomics, we also revealed that GSK3s phosphorylated the auxin carrier PIN-FORMED1 and regulated its polarity that is required for the vascular patterning in the leaf.


Asunto(s)
Brasinoesteroides/metabolismo , Ácidos Indolacéticos/metabolismo , Proteoma , Transducción de Señal , Aminopiridinas/metabolismo , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , Estabilidad Proteica , Proteómica/métodos , Succinatos/metabolismo
5.
Genes Dev ; 31(6): 617-627, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28404632

RESUMEN

In many plants, the asymmetric division of the zygote sets up the apical-basal axis of the embryo. Unlike animals, plant zygotes are transcriptionally active, implying that plants have evolved specific mechanisms to control transcriptional activation of patterning genes in the zygote. In Arabidopsis, two pathways have been found to regulate zygote asymmetry: YODA (YDA) mitogen-activated protein kinase (MAPK) signaling, which is potentiated by sperm-delivered mRNA of the SHORT SUSPENSOR (SSP) membrane protein, and up-regulation of the patterning gene WOX8 by the WRKY2 transcription factor. How SSP/YDA signaling is transduced into the nucleus and how these pathways are integrated have remained elusive. Here we show that paternal SSP/YDA signaling directly phosphorylates WRKY2, which in turn leads to the up-regulation of WOX8 transcription in the zygote. We further discovered the transcription factors HOMEODOMAIN GLABROUS11/12 (HDG11/12) as maternal regulators of zygote asymmetry that also directly regulate WOX8 transcription. Our results reveal a framework of how maternal and paternal factors are integrated in the zygote to regulate embryo patterning.


Asunto(s)
Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Transcripción Genética , Cigoto/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Sistema de Señalización de MAP Quinasas , Herencia Materna , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Herencia Paterna , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cigoto/enzimología
6.
EMBO J ; 39(1): e101515, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31617603

RESUMEN

The phytohormone auxin controls plant growth and development via TIR1-dependent protein degradation of canonical AUX/IAA proteins, which normally repress the activity of auxin response transcription factors (ARFs). IAA33 is a non-canonical AUX/IAA protein lacking a TIR1-binding domain, and its role in auxin signaling and plant development is not well understood. Here, we show that IAA33 maintains root distal stem cell identity and negatively regulates auxin signaling by interacting with ARF10 and ARF16. IAA33 competes with the canonical AUX/IAA repressor IAA5 for binding to ARF10/16 to protect them from IAA5-mediated inhibition. In contrast to auxin-dependent degradation of canonical AUX/IAA proteins, auxin stabilizes IAA33 protein via MITOGEN-ACTIVATED PROTEIN KINASE 14 (MPK14) and does not affect IAA33 gene expression. Taken together, this study provides insight into the molecular functions of non-canonical AUX/IAA proteins in auxin signaling transduction.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Proteínas Nucleares/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Fosforilación , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Proteolisis , Transducción de Señal
7.
New Phytol ; 241(2): 687-702, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37950543

RESUMEN

Hypocotyl elongation is controlled by several signals and is a major characteristic of plants growing in darkness or under warm temperature. While already several molecular mechanisms associated with this process are known, protein degradation and associated E3 ligases have hardly been studied in the context of warm temperature. In a time-course phosphoproteome analysis on Arabidopsis seedlings exposed to control or warm ambient temperature, we observed reduced levels of diverse proteins over time, which could be due to transcription, translation, and/or degradation. In addition, we observed differential phosphorylation of the LRR F-box protein SLOMO MOTION (SLOMO) at two serine residues. We demonstrate that SLOMO is a negative regulator of hypocotyl growth, also under warm temperature conditions, and protein-protein interaction studies revealed possible interactors of SLOMO, such as MKK5, DWF1, and NCED4. We identified DWF1 as a likely SLOMO substrate and a regulator of warm temperature-mediated hypocotyl growth. We propose that warm temperature-mediated regulation of SLOMO activity controls the abundance of hypocotyl growth regulators, such as DWF1, through ubiquitin-mediated degradation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Arabidopsis/metabolismo , Hipocótilo/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Plant Physiol ; 192(1): 256-273, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36747317

RESUMEN

Throughout the exploration of the soil, roots interact with their environment and adapt to different conditions. Directional root growth is guided by asymmetric molecular patterns but how these become established or are dynamically regulated is poorly understood. Asymmetric gradients of the phytohormone auxin are established during root gravitropism, mainly through directional transport mediated by polarized auxin transporters. Upon gravistimulation, PIN-FORMED2 (PIN2) is differentially distributed and accumulates at the lower root side to facilitate asymmetric auxin transport up to the elongation zone where it inhibits cell elongation. GOLVEN (GLV) peptides function in gravitropism by affecting PIN2 abundance in epidermal cells. In addition, GLV signaling through ROOT GROWTH FACTOR 1 INSENSITIVE (RGI) receptors regulates root apical meristem maintenance. Here, we show that GLV-RGI signaling in these 2 processes in Arabidopsis (Arabidopsis thaliana) can be mapped to different cells in the root tip and that, in the case of gravitropism, it operates mainly in the lateral root cap (LRC) to maintain PIN2 levels at the plasma membrane (PM). Furthermore, we found that GLV signaling upregulates the phosphorylation level of PIN2 in an RGI-dependent manner. In addition, we demonstrated that the RGI5 receptor is asymmetrically distributed in the LRC and accumulates in the lower side of the LRC after gravistimulation. Asymmetric GLV-RGI signaling in the root cap likely accounts for differential PIN2 abundance at the PM to temporarily support auxin transport up to the elongation zone, thereby representing an additional level of control on the asymmetrical auxin flux to mediate differential growth of the root.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Gravitropismo/fisiología , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo
9.
J Exp Bot ; 75(15): 4611-4624, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38872385

RESUMEN

Post-translational modifications (PTMs) greatly increase protein diversity and functionality. To help the plant research community interpret the ever-increasing number of reported PTMs, the Plant PTM Viewer (https://www.psb.ugent.be/PlantPTMViewer) provides an intuitive overview of plant protein PTMs and the tools to assess it. This update includes 62 novel PTM profiling studies, adding a total of 112 000 modified peptides reporting plant PTMs, including 14 additional PTM types and three species (moss, tomato, and soybean). Furthermore, an open modification re-analysis of a large-scale Arabidopsis thaliana mass spectrometry tissue atlas identified previously uncharted landscapes of lysine acylations predominant in seed and flower tissues and 3-phosphoglycerylation on glycolytic enzymes in plants. An extra 'Protein list analysis' tool was developed for retrieval and assessing the enrichment of PTMs in a protein list of interest. We conducted a protein list analysis on nuclear proteins, revealing a substantial number of redox modifications in the nucleus, confirming previous assumptions regarding the redox regulation of transcription. We encourage the plant research community to use PTM Viewer 2.0 for hypothesis testing and new target discovery, and also to submit new data to expand the coverage of conditions, plant species, and PTM types, thereby enriching our understanding of plant biology.


Asunto(s)
Proteínas de Plantas , Procesamiento Proteico-Postraduccional , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo
10.
Plant Cell Physiol ; 63(12): 1968-1979, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-34679169

RESUMEN

The rice root system is primarily composed of shoot-borne adventitious/crown roots (ARs/CRs) that develop from the coleoptile base, and therefore, it is an excellent model system for studying shoot-to-root trans-differentiation process. We reveal global changes in protein and metabolite abundance and protein phosphorylation in response to an auxin stimulus during CR development. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) analyses of developing crown root primordia (CRP) and emerged CRs identified 334 proteins and 12 amino acids, respectively, that were differentially regulated upon auxin treatment. Gene ontology enrichment analysis of global proteome data uncovered the biological processes associated with chromatin conformational change, gene expression and cell cycle that were regulated by auxin signaling. Spatial gene expression pattern analysis of differentially abundant proteins disclosed their stage-specific dynamic expression pattern during CRP development. Further, our tempo-spatial gene expression and functional analyses revealed that auxin creates a regulatory module during CRP development and activates ethylene biosynthesis exclusively during CRP initiation. Further, the phosphoproteome analysis identified 8,220 phosphosites, which could be mapped to 1,594 phosphoproteins and of which 66 phosphosites were differentially phosphorylated upon auxin treatment. Importantly, we observed differential phosphorylation of the cyclin-dependent kinase G-2 (OsCDKG;2) and cell wall proteins, in response to auxin signaling, suggesting that auxin-dependent phosphorylation may be required for cell cycle activation and cell wall synthesis during root organogenesis. Thus, our study provides evidence for the translational and post-translational regulation during CR development downstream of the auxin signaling pathway.


Asunto(s)
Fenómenos Biológicos , Oryza , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , Oryza/metabolismo , Proteoma/metabolismo , Cromatografía Liquida , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espectrometría de Masas en Tándem , Transducción de Señal/genética , Regulación de la Expresión Génica de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA