Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 85: 161-92, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27145841

RESUMEN

In the last 5 years, most of the molecules that control mitochondrial Ca(2+) homeostasis have been finally identified. Mitochondrial Ca(2+) uptake is mediated by the Mitochondrial Calcium Uniporter (MCU) complex, a macromolecular structure that guarantees Ca(2+) accumulation inside mitochondrial matrix upon increases in cytosolic Ca(2+). Conversely, Ca(2+) release is under the control of the Na(+)/Ca(2+) exchanger, encoded by the NCLX gene, and of a H(+)/Ca(2+) antiporter, whose identity is still debated. The low affinity of the MCU complex, coupled to the activity of the efflux systems, protects cells from continuous futile cycles of Ca(2+) across the inner mitochondrial membrane and consequent massive energy dissipation. In this review, we discuss the basic principles that govern mitochondrial Ca(2+) homeostasis and the methods used to investigate the dynamics of Ca(2+) concentration within the organelles. We discuss the functional and structural role of the different molecules involved in mitochondrial Ca(2+) handling and their pathophysiological role.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Animales , Canales de Calcio/química , Canales de Calcio/genética , Señalización del Calcio , Regulación de la Expresión Génica , Homeostasis , Humanos , Transporte Iónico , Cinética , Mitocondrias/genética , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales , Modelos Moleculares , Intercambiador de Sodio-Calcio/genética , Termodinámica
2.
Nature ; 572(7771): 609-613, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31435016

RESUMEN

Mitochondria provide chemical energy for endoergonic reactions in the form of ATP, and their activity must meet cellular energy requirements, but the mechanisms that link organelle performance to ATP levels are poorly understood. Here we confirm the existence of a protein complex localized in mitochondria that mediates ATP-dependent potassium currents (that is, mitoKATP). We show that-similar to their plasma membrane counterparts-mitoKATP channels are composed of pore-forming and ATP-binding subunits, which we term MITOK and MITOSUR, respectively. In vitro reconstitution of MITOK together with MITOSUR recapitulates the main properties of mitoKATP. Overexpression of MITOK triggers marked organelle swelling, whereas the genetic ablation of this subunit causes instability in the mitochondrial membrane potential, widening of the intracristal space and decreased oxidative phosphorylation. In a mouse model, the loss of MITOK suppresses the cardioprotection that is elicited by pharmacological preconditioning induced by diazoxide. Our results indicate that mitoKATP channels respond to the cellular energetic status by regulating organelle volume and function, and thereby have a key role in mitochondrial physiology and potential effects on several pathological processes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Mitocondrias Cardíacas/metabolismo , Canales de Potasio/metabolismo , Animales , Cardiotónicos/farmacología , Diazóxido/farmacología , Fenómenos Electrofisiológicos , Corazón/efectos de los fármacos , Corazón/fisiología , Precondicionamiento Isquémico Miocárdico , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/fisiología , Tamaño de los Órganos/efectos de los fármacos , Fosforilación Oxidativa , Potasio/metabolismo , Canales de Potasio/química , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
3.
Nat Rev Mol Cell Biol ; 13(9): 566-78, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22850819

RESUMEN

During the past two decades calcium (Ca(2+)) accumulation in energized mitochondria has emerged as a biological process of utmost physiological relevance. Mitochondrial Ca(2+) uptake was shown to control intracellular Ca(2+) signalling, cell metabolism, cell survival and other cell-type specific functions by buffering cytosolic Ca(2+) levels and regulating mitochondrial effectors. Recently, the identity of mitochondrial Ca(2+) transporters has been revealed, opening new perspectives for investigation and molecular intervention.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Animales , Apoptosis , Autofagia , Canales de Calcio/metabolismo , Humanos , Modelos Biológicos
4.
Mol Cell ; 64(1): 148-162, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27642048

RESUMEN

Mutations in subunits of mitochondrial m-AAA proteases in the inner membrane cause neurodegeneration in spinocerebellar ataxia (SCA28) and hereditary spastic paraplegia (HSP7). m-AAA proteases preserve mitochondrial proteostasis, mitochondrial morphology, and efficient OXPHOS activity, but the cause for neuronal loss in disease is unknown. We have determined the neuronal interactome of m-AAA proteases in mice and identified a complex with C2ORF47 (termed MAIP1), which counteracts cell death by regulating the assembly of the mitochondrial Ca2+ uniporter MCU. While MAIP1 assists biogenesis of the MCU subunit EMRE, the m-AAA protease degrades non-assembled EMRE and ensures efficient assembly of gatekeeper subunits with MCU. Loss of the m-AAA protease results in accumulation of constitutively active MCU-EMRE channels lacking gatekeeper subunits in neuronal mitochondria and facilitates mitochondrial Ca2+ overload, mitochondrial permeability transition pore opening, and neuronal death. Together, our results explain neuronal loss in m-AAA protease deficiency by deregulated mitochondrial Ca2+ homeostasis.


Asunto(s)
Canales de Calcio/metabolismo , Cerebelo/metabolismo , Cuerpo Estriado/metabolismo , Hipocampo/metabolismo , Metaloendopeptidasas/genética , Mitocondrias/metabolismo , Neuronas/metabolismo , Proteasas ATP-Dependientes/genética , Proteasas ATP-Dependientes/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Calcio/metabolismo , Canales de Calcio/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Muerte Celular , Cerebelo/patología , Cuerpo Estriado/patología , Regulación de la Expresión Génica , Células HEK293 , Hipocampo/patología , Homeostasis/genética , Humanos , Transporte Iónico , Metaloendopeptidasas/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Neuronas/patología , Mapeo de Interacción de Proteínas , Transducción de Señal
5.
Plant J ; 109(4): 1014-1027, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34837294

RESUMEN

Precise measurements of dynamic changes in free Ca2+ concentration in the lumen of the plant endoplasmic reticulum (ER) have been lacking so far, despite increasing evidence for the contribution of this intracellular compartment to Ca2+ homeostasis and signalling in the plant cell. In the present study, we targeted an aequorin chimera with reduced Ca2+ affinity to the ER membrane and facing the ER lumen. To this aim, the cDNA for a low-Ca2+ -affinity aequorin variant (AEQmut) was fused to the nucleotide sequence encoding a non-cleavable N-terminal ER signal peptide (fl2). The correct targeting of fl2-AEQmut was confirmed by immunocytochemical analyses in transgenic Arabidopsis thaliana (Arabidopsis) seedlings. An experimental protocol well-established in animal cells - consisting of ER Ca2+ depletion during photoprotein reconstitution followed by ER Ca2+ refilling - was applied to carry out ER Ca2+ measurements in planta. Rapid and transient increases of the ER luminal Ca2+ concentration ([Ca2+ ]ER ) were recorded in response to different environmental stresses, displaying stimulus-specific Ca2+ signatures. The comparative analysis of ER and chloroplast Ca2+ dynamics indicates a complex interplay of these organelles in shaping cytosolic Ca2+ signals during signal transduction events. Our data highlight significant differences in basal [Ca2+ ]ER and Ca2+ handling by plant ER compared to the animal counterpart. The set-up of an ER-targeted aequorin chimera extends and complements the currently available toolkit of organelle-targeted Ca2+ indicators by adding a reporter that improves our quantitative understanding of Ca2+ homeostasis in the plant endomembrane system.


Asunto(s)
Aequorina/metabolismo , Arabidopsis/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Aequorina/genética , Animales , Arabidopsis/genética , Cloroplastos/metabolismo , Citosol/metabolismo , Homeostasis , Proteínas Luminiscentes/metabolismo , Plantones/metabolismo
6.
Mol Cell ; 53(5): 726-37, 2014 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-24560927

RESUMEN

Mitochondrial calcium accumulation was recently shown to depend on a complex composed of an inner-membrane channel (MCU and MCUb) and regulatory subunits (MICU1, MCUR1, and EMRE). A fundamental property of MCU is low activity at resting cytosolic Ca(2+) concentrations, preventing deleterious Ca(2+) cycling and organelle overload. Here we demonstrate that these properties are ensured by a regulatory heterodimer composed of two proteins with opposite effects, MICU1 and MICU2, which, both in purified lipid bilayers and in intact cells, stimulate and inhibit MCU activity, respectively. Both MICU1 and MICU2 are regulated by calcium through their EF-hand domains, thus accounting for the sigmoidal response of MCU to [Ca(2+)] in situ and allowing tight physiological control. At low [Ca(2+)], the dominant effect of MICU2 largely shuts down MCU activity; at higher [Ca(2+)], the stimulatory effect of MICU1 allows the prompt response of mitochondria to Ca(2+) signals generated in the cytoplasm.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Aequorina/química , Calcio/química , Citoplasma/metabolismo , Citosol/metabolismo , Dimerización , Disulfuros , Electrofisiología/métodos , Silenciador del Gen , Células HeLa , Humanos , Inmunohistoquímica , Membrana Dobles de Lípidos/química , Mitocondrias/metabolismo , Unión Proteica , ARN Interferente Pequeño/metabolismo , Transducción de Señal
7.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36142664

RESUMEN

Non-thermal plasma technology is increasingly being applied in the plant biology field. Despite the variety of beneficial effects of plasma-activated water (PAW) on plants, information about the mechanisms of PAW sensing by plants is still limited. In this study, in order to link PAW perception to the positive downstream responses of plants, transgenic Arabidopsis thaliana seedlings expressing the Ca2+-sensitive photoprotein aequorin in the cytosol were challenged with water activated by low-power non-thermal plasma generated by a dielectric barrier discharge (DBD) source. PAW sensing by plants resulted in the occurrence of cytosolic Ca2+ signals, whose kinetic parameters were found to strictly depend on the operational conditions of the plasma device and thus on the corresponding mixture of chemical species contained in the PAW. In particular, we highlighted the effect on the intracellular Ca2+ signals of low doses of DBD-PAW chemicals and also presented the effects of consecutive plant treatments. The results were discussed in terms of the possibility of using PAW-triggered Ca2+ signatures as benchmarks to accurately modulate the chemical composition of PAW in order to induce environmental stress resilience in plants, thus paving the way for further applications in agriculture.


Asunto(s)
Aequorina , Arabidopsis , Calcio/farmacología , Calcio de la Dieta/farmacología , Citosol , Agua/farmacología
8.
Hum Mol Genet ; 28(11): 1782-1800, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649465

RESUMEN

Charcot-Marie-Tooth disease (CMT) type 2A is a form of peripheral neuropathy, due almost exclusively to dominant mutations in the nuclear gene encoding the mitochondrial protein mitofusin-2 (MFN2). However, there is no understanding of the relationship of clinical phenotype to genotype. MFN2 has two functions: it promotes inter-mitochondrial fusion and mediates endoplasmic reticulum (ER)-mitochondrial tethering at mitochondria-associated ER membranes (MAM). MAM regulates a number of key cellular functions, including lipid and calcium homeostasis, and mitochondrial behavior. To date, no studies have been performed to address whether mutations in MFN2 in CMT2A patient cells affect MAM function, which might provide insight into pathogenesis. Using fibroblasts from three CMT2AMFN2 patients with different mutations in MFN2, we found that some, but not all, examined aspects of ER-mitochondrial connectivity and of MAM function were indeed altered, and correlated with disease severity. Notably, however, respiratory chain function in those cells was unimpaired. Our results suggest that CMT2AMFN2 is a MAM-related disorder but is not a respiratory chain-deficiency disease. The alterations in MAM function described here could also provide insight into the pathogenesis of other forms of CMT.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Retículo Endoplásmico/genética , GTP Fosfohidrolasas/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Adulto , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Retículo Endoplásmico/metabolismo , Metabolismo Energético/genética , Femenino , Fibroblastos/metabolismo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Membranas Mitocondriales/metabolismo , Mutación , Fosforilación Oxidativa , Índice de Severidad de la Enfermedad
9.
J Cell Mol Med ; 24(13): 7102-7114, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32490600

RESUMEN

Acute myocardial infarction (AMI) and the heart failure (HF) that often result remain the leading causes of death and disability worldwide. As such, new therapeutic targets need to be discovered to protect the myocardium against acute ischaemia/reperfusion (I/R) injury in order to reduce myocardial infarct (MI) size, preserve left ventricular function and prevent the onset of HF. Mitochondrial dysfunction during acute I/R injury is a critical determinant of cell death following AMI, and therefore, ion channels in the inner mitochondrial membrane, which are known to influence cell death and survival, provide potential therapeutic targets for cardioprotection. In this article, we review the role of mitochondrial ion channels, which are known to modulate susceptibility to acute myocardial I/R injury, and we explore their potential roles as therapeutic targets for reducing MI size and preventing HF following AMI.


Asunto(s)
Cardiotónicos/metabolismo , Canales Iónicos/metabolismo , Mitocondrias Cardíacas/metabolismo , Animales , Canales de Calcio/metabolismo , Humanos , Modelos Biológicos , Investigación Biomédica Traslacional
10.
Proc Natl Acad Sci U S A ; 114(43): E9006-E9015, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29073097

RESUMEN

The mitochondrial Ca2+ uniporter complex (MCUC) is a multimeric ion channel which, by tuning Ca2+ influx into the mitochondrial matrix, finely regulates metabolic energy production. In the heart, this dynamic control of mitochondrial Ca2+ uptake is fundamental for cardiomyocytes to adapt to either physiologic or pathologic stresses. Mitochondrial calcium uniporter (MCU), which is the core channel subunit of MCUC, has been shown to play a critical role in the response to ß-adrenoreceptor stimulation occurring during acute exercise. The molecular mechanisms underlying the regulation of MCU, in conditions requiring chronic increase in energy production, such as physiologic or pathologic cardiac growth, remain elusive. Here, we show that microRNA-1 (miR-1), a member of the muscle-specific microRNA (myomiR) family, is responsible for direct and selective targeting of MCU and inhibition of its translation, thereby affecting the capacity of the mitochondrial Ca2+ uptake machinery. Consistent with the role of miR-1 in heart development and cardiomyocyte hypertrophic remodeling, we additionally found that MCU levels are inversely related with the myomiR content, in murine and, remarkably, human hearts from both physiologic (i.e., postnatal development and exercise) and pathologic (i.e., pressure overload) myocardial hypertrophy. Interestingly, the persistent activation of ß-adrenoreceptors is likely one of the upstream repressors of miR-1 as treatment with ß-blockers in pressure-overloaded mouse hearts prevented its down-regulation and the consequent increase in MCU content. Altogether, these findings identify the miR-1/MCU axis as a factor in the dynamic adaptation of cardiac cells to hypertrophy.


Asunto(s)
Canales de Calcio/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Aorta/citología , Canales de Calcio/genética , Cardiomegalia/metabolismo , Metabolismo Energético , Humanos , Ratones , MicroARNs/genética , Condicionamiento Físico Animal , Ratas , Ratas Sprague-Dawley , Receptores Adrenérgicos beta/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 38(10): 2484-2497, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30354220

RESUMEN

Objective- EMILIN-1 (elastin microfibrils interface located protein-1) protein inhibits pro-TGF-ß (transforming growth factor-ß) proteolysis and limits TGF-ß bioavailability in vascular extracellular matrix. Emilin1-/- null mice display increased vascular TGF-ß signaling and are hypertensive. Because EMILIN-1 is expressed in vessels from embryonic life to adulthood, we aimed at unravelling whether the hypertensive phenotype of Emilin1-/- null mice results from a developmental defect or lack of homeostatic role in the adult. Approach and Results- By using a conditional gene targeting inactivating EMILIN-1 in smooth muscle cells of adult mice, we show that increased blood pressure in mice with selective smooth muscle cell ablation of EMILIN-1 depends on enhanced myogenic tone. Mechanistically, we unveil that higher TGF-ß signaling in smooth muscle cells stimulates HB-EGF (heparin-binding epidermal growth factor) expression and subsequent transactivation of EGFR (epidermal growth factor receptor). With increasing intraluminal pressure in resistance arteries, the cross talk established by TGF-ß and EGFR signals recruits TRPC6 (TRP [transient receptor potential] classical type 6) and TRPM4 (TRP melastatin type 4) channels, lastly stimulating voltage-dependent calcium channels and potentiating myogenic tone. We found reduced EMILIN-1 and enhanced myogenic tone, dependent on increased TGF-ß-EGFR signaling, in resistance arteries from hypertensive patients. Conclusions- Taken together, our findings implicate an unexpected role of the TGF-ß-EGFR pathway in hypertension with current translational perspectives.


Asunto(s)
Receptores ErbB/metabolismo , Hipertensión/metabolismo , Glicoproteínas de Membrana/metabolismo , Arterias Mesentéricas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Vasoconstricción , Animales , Presión Sanguínea , Canales de Calcio/metabolismo , Estudios de Casos y Controles , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Humanos , Hipertensión/genética , Hipertensión/fisiopatología , Masculino , Glicoproteínas de Membrana/deficiencia , Glicoproteínas de Membrana/genética , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/metabolismo , Transducción de Señal , Canales Catiónicos TRPC/metabolismo , Canal Catiónico TRPC6 , Canales Catiónicos TRPM/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Vasoconstricción/efectos de los fármacos
12.
Proc Natl Acad Sci U S A ; 113(40): 11249-11254, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27647893

RESUMEN

The discovery of the multiple roles of mitochondria-endoplasmic reticulum (ER) juxtaposition in cell biology often relied upon the exploitation of Mitofusin (Mfn) 2 as an ER-mitochondria tether. However, this established Mfn2 function was recently questioned, calling for a critical re-evaluation of Mfn2's role in ER-mitochondria cross-talk. Electron microscopy and fluorescence-based probes of organelle proximity confirmed that ER-mitochondria juxtaposition was reduced by constitutive or acute Mfn2 deletion. Functionally, mitochondrial uptake of Ca2+ released from the ER was reduced following acute Mfn2 ablation, as well as in Mfn2-/- cells overexpressing the mitochondrial calcium uniporter. Mitochondrial Ca2+ uptake rate and extent were normal in isolated Mfn2-/- liver mitochondria, consistent with the finding that acute or chronic Mfn2 ablation or overexpression did not alter mitochondrial calcium uniporter complex component levels. Hence, Mfn2 stands as a bona fide ER-mitochondria tether whose ablation decreases interorganellar juxtaposition and communication.


Asunto(s)
Retículo Endoplásmico/metabolismo , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Embrión de Mamíferos/citología , Retículo Endoplásmico/ultraestructura , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Eliminación de Gen , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hígado/metabolismo , Ratones Noqueados , Mitocondrias/ultraestructura , Sondas Moleculares/metabolismo
13.
EMBO J ; 32(17): 2362-76, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23900286

RESUMEN

Mitochondrial calcium uniporter (MCU) channel is responsible for Ruthenium Red-sensitive mitochondrial calcium uptake. Here, we demonstrate MCU oligomerization by immunoprecipitation and Förster resonance energy transfer (FRET) and characterize a novel protein (MCUb) with two predicted transmembrane domains, 50% sequence similarity and a different expression profile from MCU. Based on computational modelling, MCUb includes critical amino-acid substitutions in the pore region and indeed MCUb does not form a calcium-permeable channel in planar lipid bilayers. In HeLa cells, MCUb is inserted into the oligomer and exerts a dominant-negative effect, reducing the [Ca(2+)]mt increases evoked by agonist stimulation. Accordingly, in vitro co-expression of MCUb with MCU drastically reduces the probability of observing channel activity in planar lipid bilayer experiments. These data unveil the structural complexity of MCU and demonstrate a novel regulatory mechanism, based on the inclusion of dominant-negative subunits in a multimeric channel, that underlies the fine control of the physiologically and pathologically relevant process of mitochondrial calcium homeostasis.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Calcio/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Canales de Calcio/genética , Transferencia Resonante de Energía de Fluorescencia , Células HeLa , Homeostasis , Humanos , Membrana Dobles de Lípidos , Potencial de la Membrana Mitocondrial , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína
14.
Nature ; 476(7360): 336-40, 2011 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-21685888

RESUMEN

Mitochondrial Ca(2+) homeostasis has a key role in the regulation of aerobic metabolism and cell survival, but the molecular identity of the Ca(2+) channel, the mitochondrial calcium uniporter, is still unknown. Here we have identified in silico a protein (named MCU) that shares tissue distribution with MICU1 (also known as CBARA1), a recently characterized uniporter regulator, is present in organisms in which mitochondrial Ca(2+) uptake was demonstrated and whose sequence includes two transmembrane domains. Short interfering RNA (siRNA) silencing of MCU in HeLa cells markedly reduced mitochondrial Ca(2+) uptake. MCU overexpression doubled the matrix Ca(2+) concentration increase evoked by inositol 1,4,5-trisphosphate-generating agonists, thus significantly buffering the cytosolic elevation. The purified MCU protein showed channel activity in planar lipid bilayers, with electrophysiological properties and inhibitor sensitivity of the uniporter. A mutant MCU, in which two negatively charged residues of the putative pore-forming region were replaced, had no channel activity and reduced agonist-dependent matrix Ca(2+) concentration transients when overexpressed in HeLa cells. Overall, these data demonstrate that the 40-kDa protein identified is the channel responsible for ruthenium-red-sensitive mitochondrial Ca(2+) uptake, thus providing a molecular basis for this process of utmost physiological and pathological relevance.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Secuencia de Aminoácidos , Animales , Apoptosis , Calcio/metabolismo , Canales de Calcio/deficiencia , Canales de Calcio/genética , Permeabilidad de la Membrana Celular , Secuencia Conservada , Silenciador del Gen , Células HeLa , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Transporte Iónico , Membrana Dobles de Lípidos/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Datos de Secuencia Molecular , Peso Molecular , Estructura Terciaria de Proteína , Transporte de Proteínas
15.
Adv Exp Med Biol ; 982: 25-47, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28551780

RESUMEN

Calcium (Ca2+) accumulation inside mitochondria represents a pleiotropic signal controlling a wide range of cellular functions, including key metabolic pathways and life/death decisions. This phenomenon has been first described in the 1960s, but the identity of the molecules controlling this process remained a mystery until just few years ago, when both mitochondrial Ca2+ uptake and release systems were genetically dissected. This finally opened the possibility to develop genetic models to directly test the contribution of mitochondrial Ca2+ homeostasis to cellular functions. Here we summarize our current understanding of the molecular machinery that controls mitochondrial Ca2+ handling and critically evaluate the physiopathological role of mitochondrial Ca2+ signaling, based on recent evidences obtained through in vitro and in vivo models.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Animales , Muerte Celular , Enfermedad , Metabolismo Energético , Homeostasis , Humanos , Mitocondrias/patología , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/fisiopatología , Factores de Tiempo
16.
Biochim Biophys Acta ; 1853(9): 2006-11, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25896525

RESUMEN

The mitochondrial calcium uniporter (MCU) is the critical protein of the inner mitochondrial membrane mediating the electrophoretic Ca²âº uptake into the matrix. It plays a fundamental role in the shaping of global calcium signaling and in the control of aerobic metabolism as well as apoptosis. Two features of mitochondrial calcium signaling have been known for a long time: i) mitochondrial Ca²âº uptake widely varies among cells and tissues, and ii) channel opening strongly relies on the extramitochondrial Ca²âº concentration, with low activity at resting [Ca²âº] and high capacity as soon as calcium signaling is activated. Such complexity requires a specialized molecular machinery, with several primary components can be variably gathered together in order to match energy demands and protect from toxic stimuli. In line with this, MCU is now recognized to be part of a macromolecular complex known as the MCU complex. Our understanding of the structure and function of the MCU complex is now growing promptly, revealing an unexpected complexity that highlights the pleiotropic role of mitochondrial Ca²âº signals. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Mitocondrias/metabolismo , Animales , Calcio/química , Canales de Calcio/química , Humanos , Mitocondrias/química , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad
17.
Proc Natl Acad Sci U S A ; 109(32): 12986-91, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22822213

RESUMEN

Mitochondrial ability of shaping Ca(2+) signals has been demonstrated in a large number of cell types, but it is still debated in heart cells. Here, we take advantage of the molecular identification of the mitochondrial Ca(2+) uniporter (MCU) and of unique targeted Ca(2+) probes to directly address this issue. We demonstrate that, during spontaneous Ca(2+) pacing, Ca(2+) peaks on the outer mitochondrial membrane (OMM) are much greater than in the cytoplasm because of a large number of Ca(2+) hot spots generated on the OMM surface. Cytoplasmic Ca(2+) peaks are reduced or enhanced by MCU overexpression and siRNA silencing, respectively; the opposite occurs within the mitochondrial matrix. Accordingly, the extent of contraction is reduced by overexpression of MCU and augmented by its down-regulation. Modulation of MCU levels does not affect the ATP content of the cardiomyocytes. Thus, in neonatal cardiac myocytes, mitochondria significantly contribute to buffering the amplitude of systolic Ca(2+) rises.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Citoplasma/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente , Membranas Mitocondriales/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Ratas , Ratas Wistar
19.
J Biol Chem ; 288(15): 10750-8, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-23400777

RESUMEN

The direct measurement of mitochondrial [Ca(2+)] with highly specific probes demonstrated that major swings in organellar [Ca(2+)] parallel the changes occurring in the cytosol and regulate processes as diverse as aerobic metabolism and cell death by necrosis and apoptosis. Despite great biological relevance, insight was limited by the complete lack of molecular understanding. The situation has changed, and new perspectives have emerged following the very recent identification of the mitochondrial Ca(2+) uniporter, the channel allowing rapid Ca(2+) accumulation across the inner mitochondrial membrane.


Asunto(s)
Apoptosis/fisiología , Canales de Calcio/metabolismo , Calcio/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Animales , Canales de Calcio/genética , Humanos , Mitocondrias/genética , Necrosis
20.
Hum Mol Genet ; 21(17): 3858-70, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22678058

RESUMEN

The mitochondrial protein AFG3L2 forms homo-oligomeric and hetero-oligomeric complexes with paraplegin in the inner mitochondrial membrane, named m-AAA proteases. These complexes are in charge of quality control of misfolded proteins and participate in the regulation of OPA1 proteolytic cleavage, required for mitochondrial fusion. Mutations in AFG3L2 cause spinocerebellar ataxia type 28 and a complex neurodegenerative syndrome of childhood. In this study, we demonstrated that the loss of AFG3L2 in mouse embryonic fibroblasts (MEFs) reduces mitochondrial Ca(2+) uptake capacity. This defect is neither a consequence of global alteration in cellular Ca(2+) homeostasis nor of the reduced driving force for Ca(2+) internalization within mitochondria, since cytosolic Ca(2+) transients and mitochondrial membrane potential remain unaffected. Moreover, experiments in permeabilized cells revealed unaltered mitochondrial Ca(2+) uptake speed in Afg3l2(-/-) cells, indicating the presence of functional Ca(2+) uptake machinery. Our results show that the defective Ca(2+) handling in Afg3l2(-/-) cells is caused by fragmentation of the mitochondrial network, secondary to respiratory dysfunction and the consequent processing of OPA1. This leaves a number of mitochondria devoid of connections to the ER and thus without Ca(2+) elevations, hampering the proper Ca(2+) diffusion along the mitochondrial network. The recovery of mitochondrial fragmentation in Afg3l2(-/-) MEFs by overexpression of OPA1 rescues the impaired mitochondrial Ca(2+) buffering, but fails to restore respiration. By linking mitochondrial morphology and Ca(2+) homeostasis, these findings shed new light in the molecular mechanisms underlining neurodegeneration caused by AFG3L2 mutations.


Asunto(s)
Proteasas ATP-Dependientes/deficiencia , Proteasas ATP-Dependientes/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Animales , Respiración de la Célula , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Fibroblastos/patología , GTP Fosfohidrolasas/metabolismo , Potencial de la Membrana Mitocondrial , Ratones , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA