Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Biodivers ; 21(4): e202400254, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38426938

RESUMEN

In this paper, the first complete review on the seco-iridoids from the genus Jasminum L. was presented. In particular, their occurrence in the genus was detailed together with their biological activities. The literature survey has clearly pointed out that only a few Jasminum species have been studied for their seco-iridoid content evidencing oleoside derivatives as main compounds. In addition, the biological studies performed on them are very scarce focusing mainly on antioxidant and anti-inflammatory assays with modest effectiveness. All these results greatly underline the need for further in-depth analyses on these compounds under both the aspects.


Asunto(s)
Iridoides , Jasminum , Antiinflamatorios/farmacología
2.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36768978

RESUMEN

Cutaneous melanoma is an immunogenic highly heterogenic tumor characterized by poor outcomes when it is diagnosed late. Therefore, immunotherapy in combination with other anti-proliferative approaches is among the most effective weapons to control its growth and metastatic dissemination. Recently, a large amount of published reports indicate the interest of researchers and clinicians about plant secondary metabolites as potentially useful therapeutic tools due to their lower presence of side effects coupled with their high potency and efficacy. Published evidence was reported in most cases through in vitro studies but also, with a growing body of evidence, through in vivo investigations. Our aim was, therefore, to review the published studies focused on the most interesting phytochemicals whose immunomodulatory activities and/or mechanisms of actions were demonstrated and applied to melanoma models.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Melanoma/patología , Neoplasias Cutáneas/tratamiento farmacológico , Agentes Inmunomoduladores , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Plantas
3.
Molecules ; 28(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37570609

RESUMEN

Vinca sardoa (Stearn) Pignatti, known as Sardinian periwinkle, is widely diffused in Sardinia (Italy). This species contains indole alkaloids, which are known to have a great variety of biological activities. This study investigated the antileukemic activity against a B lymphoblast cell line (SUP-B15) of V. sardoa alkaloid-rich extracts obtained from plants grown in Italy, in Iglesias (Sardinia) and Rome (Latium). All the extracts showed a good capacity to induce reductions in cell proliferation of up to 50% at the tested concentrations (1-15 µg/mL). Moreover, none of the extracts showed cytotoxicity on normal cells at all the studied concentrations.


Asunto(s)
Alcaloides , Antineoplásicos , Vinca , Alcaloides/farmacología , Alcaloides Indólicos/farmacología , Antineoplásicos/farmacología , Proliferación Celular , Extractos Vegetales/farmacología
4.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142359

RESUMEN

Histone acetyltransferases (HATs) are involved in the epigenetic positive control of gene expression in eukaryotes. CREB-binding proteins (CBP)/p300, a subfamily of highly conserved HATs, have been shown to function as acetylases on both histones and non-histone proteins. In the model plant Arabidopsis thaliana among the five CBP/p300 HATs, HAC1, HAC5 and HAC12 have been shown to be involved in the ethylene signaling pathway. In addition, HAC1 and HAC5 interact and cooperate with the Mediator complex, as in humans. Therefore, it is potentially difficult to discriminate the effect on plant development of the enzymatic activity with respect to their Mediator-related function. Taking advantage of the homology of the human HAC catalytic domain with that of the Arabidopsis, we set-up a phenotypic assay based on the hypocotyl length of Arabidopsis dark-grown seedlings to evaluate the effects of a compound previously described as human p300/CBP inhibitor, and to screen previously described cinnamoyl derivatives as well as newly synthesized analogues. We selected the most effective compounds, and we demonstrated their efficacy at phenotypic and molecular level. The in vitro inhibition of the enzymatic activity proved the specificity of the inhibitor on the catalytic domain of HAC1, thus substantiating this strategy as a useful tool in plant epigenetic studies.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Acetilación , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arseniato Reductasas/metabolismo , Proteína de Unión a CREB/metabolismo , Etilenos/metabolismo , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Humanos , Complejo Mediador/metabolismo , Factores de Transcripción p300-CBP/metabolismo
5.
Molecules ; 27(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35744845

RESUMEN

Influenza viruses are transmitted from human to human via airborne droplets and can be transferred through contaminated environmental surfaces. Some works have demonstrated the efficacy of essential oils (EOs) as antimicrobial and antiviral agents, but most of them examined the liquid phases, which are generally toxic for oral applications. In our study, we describe the antiviral activity of Citrus bergamia, Melaleuca alternifolia, Illicium verum and Eucalyptus globulus vapor EOs against influenza virus type A. In the vapor phase, C. bergamia and M. alternifolia strongly reduced viral cytopathic effect without exerting any cytotoxicity. The E. globulus vapor EO reduced viral infection by 78% with no cytotoxicity, while I. verum was not effective. Furthermore, we characterized the EOs and their vapor phase by the head-space gas chromatography-mass spectrometry technique, observing that the major component found in each liquid EO is the same one of the corresponding vapor phases, with the exception of M. alternifolia. To deepen the mechanism of action, the morphological integrity of virus particles was checked by negative staining transmission electron microscopy, showing that they interfere with the lipid bilayer of the viral envelope, leading to the decomposition of membranes. We speculated that the most abundant components of the vapor EOs might directly interfere with influenza virus envelope structures or mask viral structures important for early steps of viral infection.


Asunto(s)
Antiinfecciosos , Eucalyptus , Subtipo H1N1 del Virus de la Influenza A , Melaleuca , Aceites Volátiles , Antiinfecciosos/farmacología , Antivirales/farmacología , Eucalyptus/química , Melaleuca/química , Aceites Volátiles/química , Aceites Volátiles/farmacología
6.
Bioorg Med Chem Lett ; 42: 128087, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33964446

RESUMEN

Candida albicans, in specific conditions, is responsible of severe invasive systemic candidiasis that are related to its ability to produce biofilm on biological and artificial surfaces. Many studies reported the role of iron in fungal growth and virulence and the ability of metal chelating agents to interfere with C. albicans metabolism, virulence and biofilm formation. Here we report the activity of 3-hydroxy-1,2-dimethyl-4(1H)-pyridinone (deferiprone) derivatives against C. albicans planktonic cells and biofilm. Some of the studied compounds (2b and 3b) were able to chelate Fe(III) and Cu(II), and showed an interesting activity on planktonic cells (MIC50 of 32 µg/mL and 16 µg/mL respectively) and on biofilm formation (BMIC50 of 32 µg/mL and 16 µg/mL respectively) in cultured ATCC 10,231C. albicans; this activity was reduced, in a concentration dependent way, by the addition of Fe(III) and Cu(II) to the culture media. Furthermore, the most active compound 3b showed a low toxicity on Galleria mellonella larvae.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Quelantes/farmacología , Cobre/farmacología , Deferiprona/farmacología , Hierro/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Quelantes/síntesis química , Quelantes/química , Cobre/química , Deferiprona/química , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Hierro/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
7.
Molecules ; 26(15)2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34361654

RESUMEN

Growing attention to environmental protection leads food industries to adopt a model of "circular economy" applying safe and sustainable technologies to recover, recycle and valorize by-products. Therefore, by-products become raw material for other industries. Tomato processing industry produces significant amounts of by-products, consisting of skins and seeds. Tomato skin is very rich in lycopene, and from its seeds, high nutritional oil can be extracted. Alternative use of the two fractions not only could cut disposal costs but also allow one to extract bioactive compounds and an oil with a high nutritional value. This review focused on the recent advance in extraction of lycopene, whose beneficial effects on health are widely recognized.


Asunto(s)
Antioxidantes/aislamiento & purificación , Manipulación de Alimentos/métodos , Licopeno/aislamiento & purificación , Solanum lycopersicum , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo
8.
Molecules ; 26(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540875

RESUMEN

BACKGROUND: Anticancer drug resistance is a challenging phenomenon of growing concern which arises from alteration in drug targets. Despite the fast speed of new chemotherapeutic agent design, the increasing prevalence of this phenomenon requires further research and treatment development. Recently, we reported a new aminopyrimidine compound-namely RDS 344-as a potential innovative anticancer agent. METHODS: Herein, we report the design, synthesis, and anti-proliferative activity of new aminopyrimidine derivatives structurally related to RDS 3442 obtained by carrying out substitutions at position 6 of the pyrimidine core and/or on the 2-aniline ring of our hit. The ability to inhibit cell proliferation was evaluated on different types of tumors, glioblastoma, triple-negative breast cancer, oral squamous cell carcinomas and colon cancer plus on human dermal fibroblasts chosen as control of normal cells. RESULTS: The most interesting compound was the N-benzyl counterpart of RDS 3442, namely 2a, that induced a significant decrease in cell viability in all the tested tumor cell lines, with EC50s ranging from 4 and 8 µM, 4-13 times more active of hit. CONCLUSIONS: These data suggest a potential role for this class of molecules as promising tool for new approaches in treating cancers of different histotype.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Diseño de Fármacos , Pirimidinas/síntesis química , Pirimidinas/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas de Química Sintética , Humanos , Pirimidinas/química
9.
Bioorg Med Chem Lett ; 30(18): 127420, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32763808

RESUMEN

A library of cathepsin S inhibitors of the dipeptide nitrile chemotype, bearing a bioisosteric sulfonamide moiety, was synthesized. Kinetic investigations were performed at four human cysteine proteases, i.e. cathepsins S, B, K and L. Compound 12 with a terminal 3-biphenyl sulfonamide substituent was the most potent (Ki = 4.02 nM; selectivity ratio cathepsin S/K = 5.8; S/L = 67) and 24 with a 4'-fluoro-4-biphenyl sulfonamide substituent the most selective cathepsin S inhibitor (Ki = 35.5 nM; selectivity ratio cathepsin S/K = 57; S/L = 31). In silico design and biochemical evaluation emphasized the impact of the sulfonamide linkage on selectivity and a possible switch of P2 and P3 substituents with respect to the occupation of the corresponding binding sites of cathepsin S.


Asunto(s)
Catepsinas/antagonistas & inhibidores , Dipéptidos/síntesis química , Inhibidores Enzimáticos/síntesis química , Nitrilos/síntesis química , Sulfonamidas/química , Secuencia de Aminoácidos , Sitios de Unión , Catepsina K/metabolismo , Catepsina L/metabolismo , Simulación por Computador , Proteasas de Cisteína/metabolismo , Humanos , Cinética , Unión Proteica , Relación Estructura-Actividad
10.
Bioorg Med Chem Lett ; 30(18): 127439, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32717373

RESUMEN

Cysteine protease B (CPB) can be targeted by reversible covalent inhibitors that could serve as antileishmanial compounds. Here, sixteen dipeptidyl nitrile derivatives were synthesized, tested against CPB, and analyzed using matched molecular pairs to determine the effects of stereochemistry and p-phenyl substitution on enzyme inhibition. The compound (S)-2-(((S)-1-(4-bromophenyl)-2,2,2-trifluoroethyl)amino)-N-(1-cyanocyclopropyl)-3-phenylpropanamide (5) was the most potent CPB inhibitor (pKi = 6.82), which was also selective for human cathepsin B (pKi < 5). The inversion of the stereochemistry from S to R was more detrimental to potency when placed at the P2 position than at P3. The p-Br derivatives were more potent than the p-CH3 and p-OCH3 derivatives, probably due to intermolecular interactions with the S3 subsite.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/metabolismo , Cisteína/química , Nitrilos/síntesis química , Sitios de Unión , Catepsina B/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Modelos Moleculares , Unión Proteica , Estereoisomerismo , Relación Estructura-Actividad
11.
J Chem Inf Model ; 60(3): 1666-1677, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32126170

RESUMEN

Reversible and irreversible covalent ligands are advanced cysteine protease inhibitors in the drug development pipeline. K777 is an irreversible inhibitor of cruzain, a necessary enzyme for the survival of the Trypanosoma cruzi (T. cruzi) parasite, the causative agent of Chagas disease. Despite their importance, irreversible covalent inhibitors are still often avoided due to the risk of adverse effects. Herein, we replaced the K777 vinyl sulfone group with a nitrile moiety to obtain a reversible covalent inhibitor (Neq0682) of cysteine protease. Then, we used advanced experimental and computational techniques to explore details of the inhibition mechanism of cruzain by reversible and irreversible inhibitors. The isothermal titration calorimetry (ITC) analysis shows that inhibition of cruzain by an irreversible inhibitor is thermodynamically more favorable than by a reversible one. The hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) and Molecular Dynamics (MD) simulations were used to explore the mechanism of the reaction inhibition of cruzain by K777 and Neq0682. The calculated free energy profiles show that the Cys25 nucleophilic attack and His162 proton transfer occur in a single step for a reversible inhibitor and two steps for an irreversible covalent inhibitor. The hybrid QM/MM calculated free energies for the inhibition reaction correspond to -26.7 and -5.9 kcal mol-1 for K777 and Neq0682 at the MP2/MM level, respectively. These results indicate that the ΔG of the reaction is very negative for the process involving K777, consequently, the covalent adduct cannot revert to a noncovalent protein-ligand complex, and its binding tends to be irreversible. Overall, the present study provides insights into a covalent inhibition mechanism of cysteine proteases.


Asunto(s)
Proteasas de Cisteína , Trypanosoma cruzi , Cisteína Endopeptidasas , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas Protozoarias
12.
Bioorg Med Chem ; 28(22): 115743, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33038787

RESUMEN

Leishmania mexicana is an obligate intracellular protozoan parasite that causes the cutaneous form of leishmaniasis affecting South America and Mexico. The cysteine protease LmCPB is essential for the virulence of the parasite and therefore, it is an appealing target for antiparasitic therapy. A library of nitrile-based cysteine protease inhibitors was screened against LmCPB to develop a treatment of cutaneous leishmaniasis. Several compounds are sufficiently high-affinity LmCPB inhibitors to serve both as starting points for drug discovery projects and as probes for target validation. A 1.4 Å X ray crystal structure, the first to be reported for LmCPB, was determined for the complex of this enzyme covalently bound to an azadipeptide nitrile ligand. Mapping the structure-activity relationships for LmCPB inhibition revealed superadditive effects for two pairs of structural transformations. Therefore, this work advances our understanding of azadipeptidyl and dipeptidyl nitrile structure-activity relationships for LmCPB structure-based inhibitor design. We also tested the same series of inhibitors on related cysteine proteases cathepsin L and Trypanosoma cruzi cruzain. The modulation of these mammalian and protozoan proteases represents a new framework for targeting papain-like cysteine proteases.


Asunto(s)
Compuestos Aza/farmacología , Catepsina B/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Leishmania mexicana/efectos de los fármacos , Tripanocidas/farmacología , Compuestos Aza/síntesis química , Compuestos Aza/química , Catepsina B/metabolismo , Cristalografía por Rayos X , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/química , Dipéptidos/síntesis química , Dipéptidos/química , Dipéptidos/farmacología , Relación Dosis-Respuesta a Droga , Leishmania mexicana/enzimología , Simulación de Dinámica Molecular , Estructura Molecular , Nitrilos/síntesis química , Nitrilos/química , Nitrilos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química
13.
Molecules ; 25(1)2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31947789

RESUMEN

In this review article, the occurrence of nor-lignans and their biological activities are explored and described. Nor-lignans have proven to be present in several different families also belonging to chemosystematically distant orders as well as to have many different beneficial pharmacological activities. This review article represents the first one on this argument and is thought to give a first overview on these compounds with the hope that their study may continue and increase, after this.


Asunto(s)
Lignanos/química , Lignanos/uso terapéutico , Plantas/química , Animales , Humanos
14.
Bioorg Med Chem ; 27(22): 115083, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31561938

RESUMEN

The structure-activity relationship for nitrile-based cruzain inhibitors incorporating a P2 amide replacement based on trifluoroethylamine was explored by deconstruction of a published series of inhibitors. It was demonstrated that the P3 biphenyl substituent present in the published inhibitor structures could be truncated to phenyl with only a small loss of affinity. The effects of inverting the configuration of the P2 amide replacement and linking a benzyl substituent at P1 were observed to be strongly nonadditive. We show that plotting affinity against molecular size provides a means to visualize both the molecular size efficiency of structural transformations and the nonadditivity in the structure-activity relationship. We also show how the relationship between affinity and lipophilicity, measured by high-performance liquid chromatography with an immobilized artificial membrane stationary phase, may be used to normalize affinity with respect to lipophilicity.


Asunto(s)
Amidas/química , Cisteína Endopeptidasas/síntesis química , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/síntesis química , Estructura Molecular , Relación Estructura-Actividad
15.
Int J Mol Sci ; 20(23)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816826

RESUMEN

Inflammation and oxidative stress are always more recognized as responsible for chronic disease at the intestinal level. Currently, a growing interest is addressed to the discovery of diet-derived products which have anti-inflammatory and antioxidant properties. This work aims to characterize the pharmacological potential of dehydrated potatoes. For this purpose, a simulated gastrointestinal digestion was carried out. The bioaccessible peptides were fractionated on the basis of their molecular weight and tested on intestinal epithelial cells (IEC-6) under oxidative and inflammatory conditions. Our results demonstrate that the tested peptide fractions were able to significantly inhibit tumor necrosis factor-α release and cycloxygenase-2 and inducible nitric oxide synthase expression. The tested peptides also showed significant antioxidant activity, being able to both reduce reactive oxygen species (ROS) release, also from mitochondria, and nitrotyrosine formation, and increase the antioxidant response by heme oxygenase-1 and superoxide dismutase expression. Moreover, the peptide fractions were able to significantly increase the wound repair in IEC-6. The obtained results indicate the anti-inflammatory and antioxidant potential of dehydrated potatoes at the intestinal level.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Desecación , Intestinos/citología , Fitoquímicos/farmacología , Solanum tuberosum/química , Animales , Línea Celular , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Digestión/efectos de los fármacos , Tracto Gastrointestinal/fisiología , Hemo-Oxigenasa 1/metabolismo , Interferones/farmacología , Lipopolisacáridos/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Péptidos/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Estrés Mecánico , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
16.
Phys Chem Chem Phys ; 20(37): 24317-24328, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30211406

RESUMEN

Chagas disease affects millions of people in Latin America. This disease is caused by the protozoan parasite Trypanossoma cruzi. The cysteine protease cruzain is a key enzyme for the survival and propagation of this parasite lifecycle. Nitrile-based inhibitors are efficient inhibitors of cruzain that bind by forming a covalent bond with this enzyme. Here, three nitrile-based inhibitors dubbed Neq0409, Neq0410 and Neq0570 were synthesized, and the thermodynamic profile of the bimolecular interaction with cruzain was determined using isothermal titration calorimetry (ITC). The result suggests the inhibition process is enthalpy driven, with a detrimental contribution of entropy. In addition, we have used hybrid Quantum Mechanical/Molecular Mechanical (QM/MM) and Molecular Dynamics (MD) simulations to investigate the reaction mechanism of reversible covalent modification of cruzain by Neq0409, Neq0410 and Neq0570. The computed free energy profile shows that the nucleophilic attack of Cys25 on the carbon C1 of inhibitiors and the proton transfer from His162 to N1 of the dipeptidyl nitrile inhibitor take place in a single step. The calculated free energy of the inhibiton reaction is in agreement with covalent experimental binding. Altogether, the results reported here suggests that nitrile-based inhibitors are good candidates for the development of reversible covalent inhibitors of cruzain and other cysteine proteases.


Asunto(s)
Cisteína Endopeptidasas/química , Proteasas de Cisteína/química , Inhibidores de Cisteína Proteinasa/química , Nitrilos/síntesis química , Proteínas Protozoarias/química , Tripanocidas/química , Trypanosoma cruzi/enzimología , Diseño de Fármacos , Simulación de Dinámica Molecular , Unión Proteica , Teoría Cuántica , Termodinámica
17.
Bioorg Chem ; 79: 285-292, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29783099

RESUMEN

Cruzain is the major cysteine protease of Trypanosoma cruzi, the etiological agent of Chagas disease. Reversible covalent cruzain inhibitors can block the steps of cell differentiation in the parasite and kill the organism. To this end, the description of how inhibitors modified at the P2/P3 positions lead to analogs with greater cruzain affinity to the S2/S3 subsites is of fundamental importance. Albeit many efforts are being employed in the characterization of the interaction processes with S2 subsite, little is known about the cruzain S3 subsite. In this work, we show a brief but consistent study to identify favorable substitutions in P3 of dipeptidyl nitriles that increase cruzain affinity. Using molecular dynamics simulations, we have identified some dipeptidyl nitrile analogs with modifications at P3 position that had higher cruzain inhibition than the original unsubstituted compound. A matched molecular pair analysis shows the importance of including a chlorine atom in the P3-meta position. The modifications implemented in P3 are confirmed when profiling the thermodynamic parameters via isothermal titration calorimetry. The classical enthalpy-entropy compensation phenomenon, in which enthalpy changes are counterbalanced by entropy results in a small modification of ΔG. The inclusion of the chlorine atom in the P3-meta position results in the highest reduction of the detrimental entropic contribution observed in P3.


Asunto(s)
Inhibidores de Cisteína Proteinasa/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Trypanosoma cruzi/enzimología , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/química , Relación Dosis-Respuesta a Droga , Simulación de Dinámica Molecular , Estructura Molecular , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad
18.
Bioorg Med Chem Lett ; 27(22): 5031-5035, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29054358

RESUMEN

The effects on potency of cruzain inhibition of replacing a nitrile group with alternative warheads were explored. The oxime was almost an order of magnitude more potent than the corresponding nitrile and has the potential to provide access to the prime side of the catalytic site. Dipeptide aldehydes and azadipeptide nitriles were found to be two orders of magnitude more potent cruzain inhibitors than the corresponding dipeptide nitriles although potency differences were modulated by substitution at P1 and P3. Replacement of the α methylene of a dipeptide aldehyde with cyclopropane led to a loss of potency of almost three orders of magnitude. The vinyl esters and amides that were characterized as reversible inhibitors were less potent than the corresponding nitrile by between one and two orders of magnitude.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/química , Dominio Catalítico , Catepsina L/química , Catepsina L/metabolismo , Cisteína Endopeptidasas/química , Inhibidores de Cisteína Proteinasa/metabolismo , Dipéptidos/química , Diseño de Fármacos , Cinética , Nitrilos/química , Relación Estructura-Actividad
19.
J Enzyme Inhib Med Chem ; 32(1): 798-804, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28569564

RESUMEN

We discovered novel and selective sulfonamides/amides acting as inhibitors of the α-carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae (VchCA). This Gram-negative bacterium is the causative agent of cholera and colonises the upper small intestine where sodium bicarbonate is present at a high concentration. The secondary sulfonamides and amides investigated here were potent, low nanomolar VchCA inhibitors whereas their inhibition of the human cytosolic isoforms CA I and II was in the micromolar range or higher. The molecules represent an interesting lead for antibacterial agents with a possibly new mechanism of action, although their CA inhibition mechanism is unknown for the moment.


Asunto(s)
Anhidrasa Carbónica II/antagonistas & inhibidores , Anhidrasa Carbónica I/antagonistas & inhibidores , Inhibidores de Anhidrasa Carbónica/farmacología , Vibrio cholerae/enzimología , Amidas/química , Amidas/farmacología , Anhidrasa Carbónica I/metabolismo , Anhidrasa Carbónica II/metabolismo , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Humanos , Imidazoles/química , Imidazoles/farmacología , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/farmacología
20.
Bioorg Med Chem Lett ; 26(24): 5931-5935, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27838185

RESUMEN

Some compounds, characterized by phenylethenyl moiety, such as methyl cinnamate and caffeic acid phenethyl ester, are able to inhibit C. albicans biofilm formation. On these bases, and as a consequence of our previous work, we synthesized a series of cinnamoyl ester and amide derivatives in order to evaluate them for the activity against C. albicans biofilm and planktonically grown cells. The most active compounds 7 and 8 showed ⩾50% biofilm inhibition concentrations (BMIC50) of 2µg/mL and 4µg/mL respectively, against C. albicans biofilm formation; otherwise, 7 showed an interesting activity also against mature biofilm, with BMIC50 of 8µg/mL.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Cinamatos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Candida albicans/metabolismo , Cinamatos/síntesis química , Cinamatos/química , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA