RESUMEN
Characterizing seasonal changes in diatom community profiles in coastal environments is scarce worldwide. Despite diatoms being prevalent in microfouling, their role in microbially influenced corrosion of metallic materials remains poorly understood. This study reports the effect of seasonal variations on the settlement of marine diatoms and corrosion of 316 L stainless steel surfaces exposed to Chilean coastal seawater. Electron microscopy imaging revealed a diverse assembly of diatoms, exhibiting pronounced differences at genus level between summer and winter seasons, with a significant delay in diatom settlement during winter. Electrochemical measurements indicated an active role of diatoms in increasing corrosion current during biofilm development. While the final diatom composition was similar irrespective of the season, the analyses of diatom assemblages over time differed, showing faster colonization when silicate and nitrate were available. This study lays the foundation for future research on the dominant season-specific genera of diatoms to unveil the microbial interactions that could contribute to corrosion and to evaluate their potential as bioindicators for alternative surveillance strategies.
Asunto(s)
Diatomeas , Estaciones del Año , Acero Inoxidable/química , Chile , BiopelículasRESUMEN
Municipal and industrial wastewater discharges in coastal and marine environments are of major concern due to their high carbon and nitrogen loads and the resulted phenomenon of eutrophication. Bioelectrochemical reactors (BERs) for simultaneous nitrogen and carbon removal have gained attention owing to their cost efficiency and versatility, as well as the possibility of electrochemical enrich specific groups. This study presented a scalable two-chamber BERs using graphite granules as electrode material. BERs were inoculated and operated for 37 days using natural seawater with high concentrations of ammonium and acetate. The BERs demonstrated a maximum current density of 0.9 A m-3 and removal rates of 7.5 mg NH4+-N L-1 d-1 and 99.5 mg L-1 d-1 for total organic carbon (TOC). Removals observed for NH4+-N and TOC were 96.2% and 68.7%, respectively. The results of nutrient removal (i.e., ammonium, nitrate, nitrite and TOC) and microbial characterization (i.e., next-generation sequencing of the 16S rRNA gene and fluorescence in situ hybridization) showed that BERs operated with a poised cathode at -260 mV (vs. Ag/AgCl) significantly enriched nitrifying microorganisms in the anode and denitrifying microorganisms and planctomycetes in the cathode. Interestingly, the electrochemical enrichment did not increase the total number of microorganisms in the formed biofilms but controlled their composition. Thus, this work shows the first successful attempt to electrochemically enrich marine nitrifying and denitrifying microorganisms and presents a technique to accelerate the start-up process of BERs to remove dissolved inorganic nitrogen and total organic carbon from seawater.
Asunto(s)
Compuestos de Amonio , Grafito , Nitrógeno/química , Desnitrificación , Nitrificación , Aguas Residuales , Carbono , Nitratos , Reactores Biológicos , ARN Ribosómico 16S , Nitritos , Hibridación Fluorescente in Situ , Agua de MarRESUMEN
Anoxic marine zones (AMZs) impact biogeochemical cycles at the global scale, particularly the nitrogen cycle. Key microbial players from AMZs have been identified, but the majority remains unrecognized or uncharacterized. Thirty-one single-cell amplified genomes (SAGs) from the eastern tropical North and South Pacific AMZs were sequenced to gain insight into the distribution, metabolic potential and contribution to the community transcriptional profile of these uncharacterized bacterial and archaeal groups. Detailed analyses focused on SAG-bins assigned to three of these groups that presented 79%-100% estimated genome completeness: the putative sulphur-oxidizing Gamaproteobacteria EOSA II clade, a Marinimicrobia member of the recently recognized PN262000N21 clade found to be abundant in AMZ anoxic cores, and a representative of the Marine Benthic Group A Thaumarchaeota. Community-based analyses revealed that these three groups are significantly more abundant and transcriptionally more active in the AMZ microbial communities than previously described phylogenetically related microbial groups. Collectively, these groups have the potential to link biogeochemically relevant processes by coupling the carbon, nitrogen and sulfur cycles. Together, these results increase our understanding of key microbial components inhabiting AMZs and other oxygen-deficient marine environments, enhancing our capacity to predict the impact of the expansion of these ecosystems due to climate change.
Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Carbono/metabolismo , Nitrógeno/metabolismo , Azufre/metabolismo , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Microbiota , Filogenia , Agua de Mar/microbiología , TranscriptomaRESUMEN
The way strong environmental gradients shape multispecific assemblages has allowed us to examine a suite of ecological and evolutionary hypotheses about structure, regulation and community responses to fluctuating environments. But whether the highly diverse co-occurring microorganisms are shaped in similar ways as macroscopic organisms across the same gradients has yet to be addressed in most ecosystems. Here, we characterize intertidal biofilm bacteria communities, comparing zonation at both the "species" and community levels, as well as network attributes, with co-occurring macroalgae and invertebrates in the same rocky shore system. The results revealed that the desiccation gradient has a more significant impact on smaller communities, while both desiccation and submersion gradients (surge) affect the larger, macroscopic communities. At the community level, we also confirmed the existence of distinct communities within each intertidal zone for microorganisms, similar to what has been previously described for macroorganisms. But our results indicated that dominant microbial organisms along the same environmental gradient exhibited less differentiation across tidal levels than their macroscopic counterparts. However, despite the substantial differences in richness, size and attributes of co-occurrence networks, both macro- and micro-communities respond to stress gradients, leading to the formation of similar zonation patterns in the intertidal rocky shore.
Asunto(s)
Ecosistema , Microbiota , Biodiversidad , Bacterias/genéticaRESUMEN
The passive film depends on the alloy's composition and the exposure conditions. How the surface composition affects the selection of microbial biofilms though, has not been fully elucidated or incorporated into the analysis of corrosive biofilms. The degradation of stainless steel (SS) exposed to natural seawater was studied to understand how the oxide layer composition of SS could affect the selection and variability of the bacterial community. To accomplish this goal, austenitic and superferritic SS grades were exposed to natural seawater on the central coast of Chile. The deterioration of steel and qualitative description of biofilm formation was monitored at different exposure periods. Biofilms were evaluated based on massive sequencing analysis of the bacterial community and subsequent ecological studies. The results revealed that variability of the calculated corrosion rate correlated with the similarity of the bacterial community within samples from each SS and its corrosion inferred capacity. The associated bacterial families showed a higher representation in SSs with a more significant increase in the Fe/Cr ratio over the exposure time. These findings revealed that iron content in the oxide layer represents a key feature of the surface composition for selecting bacterial assemblages in marine environments.
Asunto(s)
Acero Inoxidable , Acero , Humanos , Ciencia de los Materiales , Corrosión , Agua de Mar/microbiología , Biopelículas , Bacterias , ÓxidosRESUMEN
For many years, the world's coastal marine ecosystems have received industrial waste with high nitrogen concentrations, generating the eutrophication of these ecosystems. Different physicochemical-biological technologies have been developed to remove the nitrogen present in wastewater. However, conventional technologies have high operating costs and excessive production of brines or sludge which compromise the sustainability of the treatment. Microbial electrochemical technologies (METs) have begun to gain attention due to their cost-efficiency in removing nitrogen and organic matter using the metabolic capacity of microorganisms. This article combines a critical review of the environmental problems associated with the discharge of the excess nitrogen and the biological processes involved in its biogeochemical cycle; with a comparative analysis of conventional treatment technologies and METs especially designed for nitrogen removal. Finally, current METs limitations and perspectives as a sustainable nitrogen treatment alternative and efficient microbial enrichment techniques are included.
Asunto(s)
Desnitrificación , Nitrógeno , Reactores Biológicos , Ecosistema , Nitrógeno/metabolismo , Aguas ResidualesRESUMEN
In marine ecosystems, most invertebrates possess diverse microbiomes on their external surfaces, such as those found in the pedal mucus of grazing gastropods and chitons that aids displacement on different surfaces. The microbes are then transported around and placed in contact with free-living microbial communities of micro and other macro-organisms, potentially exchanging species and homogenizing microbial composition and structure among grazer hosts. Here, we characterize the microbiota of the pedal mucus of five distantly related mollusk grazers, quantify differences in microbial community structure, mucus protein and carbohydrate content, and, through a simple laboratory experiment, assess their effects on integrated measures of biofilm abundance. Over 665 Amplicon Sequence Variants (ASVs) were found across grazers, with significant differences in abundance and composition among grazer species and epilithic biofilms. The pulmonate limpet Siphonaria lessonii and the periwinkle Echinolittorina peruviana shared similar microbiota. The microbiota of the chiton Chiton granosus, keyhole limpet Fissurella crassa, and scurrinid limpet Scurria araucana differed markedly from one another, and form those of the pulmonate limpet and periwinkle. Flavobacteriaceae (Bacteroidia) and Colwelliaceae (Gammaproteobacteria) were the most common among microbial taxa. Microbial strict specialists were found in only one grazer species. The pedal mucus pH was similar among grazers, but carbohydrate and protein concentrations differed significantly. Yet, differences in mucus composition were not reflected in microbial community structure. Only the pedal mucus of F. crassa and S. lessonii negatively affected the abundance of photosynthetic microorganisms in the biofilm, demonstrating the specificity of the pedal mucus effects on biofilm communities. Thus, the pedal mucus microbiota are distinct among grazer hosts and can affect and interact non-trophically with the epilithic biofilms on which grazers feed, potentially leading to microbial community coalescence mediated by grazer movement. Further studies are needed to unravel the myriad of non-trophic interactions and their reciprocal impacts between macro- and microbial communities.
Asunto(s)
Gammaproteobacteria , Gastrópodos , Microbiota , Poliplacóforos , Animales , Moluscos , Microbiota/genética , Biopelículas , MocoRESUMEN
In the Antarctic Peninsula, increases in mean annual temperature are associated with the coverage and population density of the two Antarctic vascular plant species-Deschampsia antarctica and Colobanthus quitensis-potentially modifying critical soil processes. In this study, we characterized the diversity and community composition of active microorganisms inhabiting the vascular plant rhizosphere in two sites with contrasting vegetation cover in King George Island, Western Antarctic Peninsula. We assessed the interplay between soil physicochemical properties and microbial diversity and composition, evaluating the effect of an in situ experimental warming on the microbial communities of the rhizosphere from D. antarctica and C. quitensis. Bacteria and Eukarya showed different responses to warming in both sites, and the effect was more noticeable in microbial eukaryotes from the low vegetation site. Furthermore, important changes were found in the relative abundance of Tepidisphaerales (Bacteria) and Ciliophora (Eukarya) between warming and control treatments. Our results showed that rhizosphere eukaryal communities are more sensitive to in situ warming than bacterial communities. Overall, our results indicate that vegetation drives the response of the active fraction of the microbial communities from the rhizosphere of Antarctic vascular plants to soil warming.
Asunto(s)
Microbiota , Rizosfera , Suelo , Regiones Antárticas , Microbiología del Suelo , Bacterias/genéticaRESUMEN
Year-round reports of phytoplankton dynamics in the West Antarctic Peninsula are rare and mainly limited to microscopy and/or pigment-based studies. We analyzed the phytoplankton community from coastal waters of Fildes Bay in the West Antarctic Peninsula between January 2014 and 2015 using metabarcoding of the nuclear and plastidial 18/16S rRNA gene from both size-fractionated and flow cytometry sorted samples. Overall 14 classes of photosynthetic eukaryotes were present in our samples with the following dominating: Bacillariophyta (diatoms), Pelagophyceae and Dictyochophyceae for division Ochrophyta, Mamiellophyceae and Pyramimonadophyceae for division Chlorophyta, Haptophyta and Cryptophyta. Each metabarcoding approach yielded a different image of the phytoplankton community with for example Prymnesiophyceae more prevalent in plastidial metabarcodes and Mamiellophyceae in nuclear ones. Diatoms were dominant in the larger size fractions and during summer, while Prymnesiophyceae and Cryptophyceae were dominant in colder seasons. Pelagophyceae were particularly abundant towards the end of autumn (May). In addition of Micromonas polaris and Micromonas sp. clade B3, both previously reported in Arctic waters, we detected a new Micromonas 18S rRNA sequence signature, close to, but clearly distinct from M. polaris, which potentially represents a new clade specific of the Antarctic. These results highlight the need for complementary strategies as well as the importance of year-round monitoring for a comprehensive description of phytoplankton communities in Antarctic coastal waters.
Asunto(s)
Bahías/microbiología , Biodiversidad , Fitoplancton , Estaciones del Año , Regiones Antárticas , Fitoplancton/clasificación , Fitoplancton/genética , Fitoplancton/crecimiento & desarrollo , ARN Ribosómico 16S/genéticaRESUMEN
Microbially influenced corrosion (MIC) is an aggressive type of corrosion that occurs in aquatic environments and is sparked by the development of a complex biological matrix over a metal surface. In marine environments, MIC is exacerbated by the frequent variability in environmental conditions and the typically high diversity of microbial communities; hence, local and in situ studies are crucial to improve our understanding of biofilm composition, biological interactions among its members, MIC characteristics, and corrosivity. Typically, material performance and anticorrosion strategies are evaluated under controlled laboratory conditions, where natural fluctuations and gradients (e.g., light, temperature, and microbial composition) are not effectively replicated. To determine whether MIC development and material deterioration observed in the laboratory are comparable to those that occur under service conditions (i.e., field conditions), we used two testing setups, in the lab and in the field. Stainless steel (SS) AISI 316L coupons were exposed to southeastern Pacific seawater for 70 days using (i) acrylic tanks in a running seawater laboratory and (ii) an offshore mooring system with experimental frames immersed at two depths (5 and 15 m). Results of electrochemical evaluation, together with those of microbial community analyses and micrographs of formed biofilms, demonstrated that the laboratory setup provides critical information on the early biofilm development process (days), but the information gathered does not predict deterioration or biofouling of SS surfaces exposed to natural conditions in the field. Our results highlight the need to conduct further research efforts to understand how laboratory experiments may better reproduce field conditions where applications are to be deployed, as well as to improve our understanding of the role of eukaryotes and the flux of nutrients and oxygen in marine MIC events.
RESUMEN
Cupriavidus necator JMP134 is a model for chloroaromatics biodegradation, capable of mineralizing 2,4-D, halobenzoates, chlorophenols and nitrophenols, among other aromatic compounds. We performed the metabolic reconstruction of aromatics degradation, linking the catabolic abilities predicted in silico from the complete genome sequence with the range of compounds that support growth of this bacterium. Of the 140 aromatic compounds tested, 60 serve as a sole carbon and energy source for this strain, strongly correlating with those catabolic abilities predicted from genomic data. Almost all the main ring-cleavage pathways for aromatic compounds are found in C. necator: the beta-ketoadipate pathway, with its catechol, chlorocatechol, methylcatechol and protocatechuate ortho ring-cleavage branches; the (methyl)catechol meta ring-cleavage pathway; the gentisate pathway; the homogentisate pathway; the 2,3-dihydroxyphenylpropionate pathway; the (chloro)hydroxyquinol pathway; the (amino)hydroquinone pathway; the phenylacetyl-CoA pathway; the 2-aminobenzoyl-CoA pathway; the benzoyl-CoA pathway and the 3-hydroxyanthranilate pathway. A broad spectrum of peripheral reactions channel substituted aromatics into these ring cleavage pathways. Gene redundancy seems to play a significant role in the catabolic potential of this bacterium. The literature on the biochemistry and genetics of aromatic compounds degradation is reviewed based on the genomic data. The findings on aromatic compounds biodegradation in C. necator reviewed here can easily be extrapolated to other environmentally relevant bacteria, whose genomes also possess a significant proportion of catabolic genes.
Asunto(s)
Biodegradación Ambiental , Cupriavidus necator/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Redes Reguladoras de Genes/fisiología , Hidrocarburos Aromáticos/metabolismo , Biología de Sistemas/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/crecimiento & desarrollo , Retroalimentación Fisiológica , Genes Bacterianos/fisiología , Biosíntesis de Proteínas/fisiología , Transcripción Genética/fisiologíaRESUMEN
Microbial electrochemical technologies have revealed the opportunity of electrochemical enrichment for specific bacterial groups that are able to catalyze reactions of interest. However, there are unsolved challenges towards their application under aggressive environmental conditions, such as in the sea. This study demonstrates the impact of surface electrochemical potential on community composition and its corrosivity. Electrochemical bacterial enrichment was successfully carried out in natural seawater without nutrient amendments. Experiments were carried out for ten days of exposure in a closed-flow system over 316L stainless steel electrodes under three different poised potentials (-150 mV, +100 mV, and +310 mV vs. Ag/AgCl). Weight loss and atomic force microscopy showed a significant difference in corrosion when +310 mV (vs. Ag/AgCl) was applied in comparison to that produced under the other tested potentials (and an unpoised control). Bacterial community analysis conducted using 16S rRNA gene profiles showed that poised potentials are more positive as +310 mV (vs. Ag/AgCl) resulted in strong enrichment for Rhodobacteraceae and Sulfitobacter. Hence, even though significant enrichment of the known electrochemically active bacteria from the Rhodobacteraceae family was accomplished, the resultant bacterial community could accelerate pitting corrosion in 316 L stainless steel, thereby compromising the durability of the electrodes and the microbial electrochemical technologies.
RESUMEN
Microbiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments. Here, we investigate the origin, evolution and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboration, we obtained DNA sequences of crAssphage from more than one-third of the world's countries and showed that the phylogeography of crAssphage is locally clustered within countries, cities and individuals. We also found fully colinear crAssphage-like genomes in both Old-World and New-World primates, suggesting that the association of crAssphage with primates may be millions of years old. Finally, by exploiting a large cohort of more than 1,000 individuals, we tested whether crAssphage is associated with bacterial taxonomic groups of the gut microbiome, diverse human health parameters and a wide range of dietary factors. We identified strong correlations with different clades of bacteria that are related to Bacteroidetes and weak associations with several diet categories, but no significant association with health or disease. We conclude that crAssphage is a benign cosmopolitan virus that may have coevolved with the human lineage and is an integral part of the normal human gut virome.
Asunto(s)
Bacteriófagos/genética , Coevolución Biológica , Microbioma Gastrointestinal , Animales , Bacteriófagos/clasificación , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/virología , ADN Viral/genética , Heces/virología , Femenino , Variación Genética , Humanos , Masculino , Filogenia , Filogeografía , Primates/virologíaRESUMEN
Marine bacterial communities isolated from the water column, sediment, the rock surface, and the green seaweed Ulva compressa were studied in an intertidal ecosystem. The study area included a coastal zone chronically affected by copper mine waste disposals. Bacterial community composition was analyzed by terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes, and multivariate analyses of T-RFLP data sets were used for comparisons. Results showed that diversity and richness indexes were not able to detect differences among compartments. However, comparisons within the same compartment clearly showed that copper enrichment was associated with changes in the composition of the bacterial communities and revealed that the magnitude of the effect depends on the compartment being considered. In this context, communities from sediments appeared as the most affected by copper enrichment. The present study also demonstrated that intertidal bacterial communities were dominated by Gammaproteobacteria, Firmicutes, and Actinobacteria and the changes in these communities were mainly due to changes in their relative abundances.
Asunto(s)
Bacterias/efectos de los fármacos , Cobre/farmacología , Ecosistema , Bacterias/clasificación , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genéticaRESUMEN
In fjord systems, Harmful Algal Blooms (HABs) not only constitute a serious problem when affecting the wildlife and ecosystems, but also human health and economic activities related to the marine environment. This is mostly due to a broad spectrum of toxic compounds produced by several members of the phytoplankton. Nevertheless, a deep coverage of the taxonomic diversity and composition of phytoplankton species and phycotoxin profiles in HAB prone areas are still lacking and little is known about the relationship between these fundamental elements for fjord ecosystems. In this study, a detailed molecular and microscopic characterization of plankton communities was performed, together with an analysis of the occurrence and spatial patterns of lipophilic toxins in a HAB prone area, located in the Southeastern Pacific fjord region. Microscopy and molecular analyses based on the 18S rRNA gene fragment indicated high diversity and taxonomic homogeneity among stations. Four toxigenic genera were identified: Pseudo-nitzschia, Dinophysis, Prorocentrum, and Alexandrium. In agreement with the detected species, liquid chromatography coupled with mass spectrometry revealed the presence of domoic acid (DA), pectenotoxin-2 (PTX-2), dinophysistoxin-2 (DTX-2), and 13-desmethyl spirolide C (SPX-1). Furthermore, a patchy distribution among DA in different net haul size fractions was found. Our results displayed a complex phytoplankton-phycotoxin pattern and for the first time contribute to the characterization of high-resolution phytoplankton community composition and phycotoxin distribution in fjords of the Southeastern Pacific region.
Asunto(s)
Biodiversidad , Estuarios , Toxinas Marinas/química , Toxinas Marinas/metabolismo , Fitoplancton/genética , Fitoplancton/metabolismo , Chile , Secuenciación de Nucleótidos de Alto RendimientoRESUMEN
Hypersaline environments represent some of the most challenging settings for life on Earth. Extremely halophilic microorganisms have been selected to colonize and thrive in these extreme environments by virtue of a broad spectrum of adaptations to counter high salinity and osmotic stress. Although there is substantial data on microbial taxonomic diversity in these challenging ecosystems and their primary osmoadaptation mechanisms, less is known about how hypersaline environments shape the genomes of microbial inhabitants at the functional level. In this study, we analyzed the microbial communities in five ponds along the discontinuous salinity gradient from brackish to salt-saturated environments and sequenced the metagenome of the salt (halite) precipitation pond in the artisanal Cáhuil Solar Saltern system. We combined field measurements with spectrophotometric pigment analysis and flow cytometry to characterize the microbial ecology of the pond ecosystems, including primary producers and applied metagenomic sequencing for analysis of archaeal and bacterial taxonomic diversity of the salt crystallizer harvest pond. Comparative metagenomic analysis of the Cáhuil salt crystallizer pond against microbial communities from other salt-saturated aquatic environments revealed a dominance of the archaeal genus Halorubrum and showed an unexpectedly low abundance of Haloquadratum in the Cáhuil system. Functional comparison of 26 hypersaline microbial metagenomes revealed a high proportion of sequences associated with nucleotide excision repair, helicases, replication and restriction-methylation systems in all of them. Moreover, we found distinctive functional signatures between the microbial communities from salt-saturated (>30% [w/v] total salinity) compared to sub-saturated hypersaline environments mainly due to a higher representation of sequences related to replication, recombination and DNA repair in the former. The current study expands our understanding of the diversity and distribution of halophilic microbial populations inhabiting salt-saturated habitats and the functional attributes that sustain them.
RESUMEN
Spatial environmental heterogeneity influences diversity of organisms at different scales. Environmental filtering suggests that local environmental conditions provide habitat-specific scenarios for niche requirements, ultimately determining the composition of local communities. In this work, we analyze the spatial variation of microbial communities across environmental gradients of sea surface temperature, salinity and photosynthetically active radiation and spatial distance in Fildes Bay, King George Island, Antarctica. We hypothesize that environmental filters are the main control of the spatial variation of these communities. Thus, strong relationships between community composition and environmental variation and weak relationships between community composition and spatial distance are expected. Combining physical characterization of the water column, cell counts by flow cytometry, small ribosomal subunit genes fingerprinting and next generation sequencing, we contrast the abundance and composition of photosynthetic eukaryotes and heterotrophic bacterial local communities at a submesoscale. Our results indicate that the strength of the environmental controls differed markedly between eukaryotes and bacterial communities. Whereas eukaryotic photosynthetic assemblages responded weakly to environmental variability, bacteria respond promptly to fine-scale environmental changes in this polar marine system.
Asunto(s)
Bacterias/aislamiento & purificación , Biodiversidad , Agua de Mar/microbiología , Regiones Antárticas , Bacterias/clasificación , Bacterias/genética , Ecosistema , Secuenciación de Nucleótidos de Alto Rendimiento , Islas , Salinidad , Agua de Mar/químicaRESUMEN
Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems.
Asunto(s)
Organismos Acuáticos , Archaea , Bacterias , Ecosistema , Poríferos , Simbiosis/fisiología , Animales , Regiones Antárticas , Organismos Acuáticos/clasificación , Organismos Acuáticos/microbiología , Organismos Acuáticos/fisiología , Archaea/clasificación , Archaea/fisiología , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Poríferos/clasificación , Poríferos/microbiología , Poríferos/fisiologíaRESUMEN
Cáhuil Lagoon in central Chile harbors distinct microbial communities in various solar salterns that are arranged as interconnected ponds with increasing salt concentrations. Here, we report the metagenome of the 3.0- to 0.2-µm fraction of the microbial community present in a crystallizer pond with 34% salinity.
RESUMEN
Microorganisms have developed copper-resistance mechanisms in order to survive in contaminated environments. The abundance of the copper-resistance genes cusA and copA, encoding respectively for a Resistance Cell Nodulation protein and for a P-type ATP-ase pump, was assessed in copper and non-copper-impacted Chilean marine sediment cores by the use of molecular tools. We demonstrated that number of copA and cusA genes per bacterial cell was higher in the contaminated sediment, and that copA gene was more abundant than cusA gene in the impacted sediment. The molecular phylogeny of the two copper-resistance genes was studied and reveals an impact of copper on the genetic composition of copA and cusA genes.