RESUMEN
Host-parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple crop Sorghum bicolor (L.) Moench and its association with the parasitic weed Striga hermonthica (Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghum LOW GERMINATION STIMULANT 1 (LGS1) are broadly distributed among African landraces and geographically associated with S. hermonthica occurrence. However, low frequency of these alleles within S. hermonthica-prone regions and their absence elsewhere implicate potential trade-offs restricting their fixation. LGS1 is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and below-ground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with trade-offs, we find signatures of balancing selection surrounding LGS1 and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR-Cas9-edited sorghum further indicate that the benefit of LGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comes at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.
Asunto(s)
Sorghum/genética , Striga/genética , Adaptación Fisiológica , Variación Genética , Genoma de Planta , Genómica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Malezas/genética , Malezas/fisiología , Sorghum/fisiología , Striga/fisiologíaAsunto(s)
Conducta Cooperativa , Humanos , Investigadores , Educación de Postgrado , Recursos HumanosRESUMEN
Intraspecific trait variation is caused by genetic and plastic responses to environment. This intraspecific diversity is captured in immense natural history collections, giving us a window into trait variation across continents and through centuries of environmental shifts. Here we tested if hypotheses based on life history and the leaf economics spectrum explain intraspecific trait changes across global spatiotemporal environmental gradients. We measured phenotypes on a 216-year time series of Arabidopsis thaliana accessions from across its native range and applied spatially varying coefficient models to quantify region-specific trends in trait coordination and trait responses to climate gradients. All traits exhibited significant change across space or through time. For example, δ15 N decreased over time across much of the range and leaf C:N increased, consistent with predictions based on anthropogenic changes in land use and atmosphere. Plants were collected later in the growing season in more recent years in many regions, possibly because populations shifted toward more spring germination and summer flowering as opposed to fall germination and spring flowering. When climate variables were considered, collection dates were earlier in warmer years, while summer rainfall had opposing associations with collection date depending on regions. There was only a modest correlation among traits, indicating a lack of a single life history/physiology axis. Nevertheless, leaf C:N was low for summer- versus spring-collected plants, consistent with a life history-physiology axis from slow-growing winter annuals to fast-growing spring/summer annuals. Regional heterogeneity in phenotype trends indicates complex responses to spatiotemporal environmental gradients potentially due to geographic genetic variation and climate interactions with other aspects of environment. Our study demonstrates how natural history collections can be used to broadly characterize trait responses to environment, revealing heterogeneity in response to anthropogenic change.
Asunto(s)
Arabidopsis , Clima , Germinación , Hojas de la Planta , Estaciones del AñoRESUMEN
BACKGROUND: The presence of non-coding introns is a characteristic feature of most eukaryotic genes. While the size of the introns, number of introns per gene and the number of intron-containing genes can vary greatly between sequenced eukaryotic genomes, the structure of a gene with reference to intron presence and positions is typically conserved in closely related species. Unexpectedly, the ABCB1 (ATP-Binding Cassette Subfamily B Member 1) gene which encodes a P-glycoprotein and underlies dwarfing traits in maize (br2), sorghum (dw3) and pearl millet (d2) displayed considerable variation in intron composition. RESULTS: An analysis of the ABCB1 gene structure in 80 angiosperms revealed that the number of introns ranged from one to nine. All introns in ABCB1 underwent either a one-time loss (single loss in one lineage/species) or multiple independent losses (parallel loss in two or more lineages/species) with the majority of losses occurring within the grass family. In contrast, the structure of the closest homolog to ABCB1, ABCB19, remained constant in the majority of angiosperms analyzed. Using known phylogenetic relationships within the grasses, we determined the ancestral branch-points where the losses occurred. Intron 7, the longest intron, was lost in only a single species, Mimulus guttatus, following duplication of ABCB1. Semiquantitative PCR showed that the M. guttatus ABCB1 gene copy without intron 7 had significantly lower transcript levels than the gene copy with intron 7. We further demonstrated that intron 7 carried two motifs that were highly conserved across the monocot-dicot divide. CONCLUSIONS: The ABCB1 gene structure is highly dynamic, while the structure of ABCB19 remained largely conserved through evolution. Precise removal of introns, preferential removal of smaller introns and presence of at least 2 bp of microhomology flanking most introns indicated that intron loss may have predominantly occurred through non-homologous end-joining (NHEJ) repair of double strand breaks. Lack of microhomology in the exon upstream of lost phase I introns was likely due to release of the selective constraint on the penultimate base (3rd base in codon) of the terminal codon by the splicing machinery. In addition to size, the presence of regulatory motifs will make introns recalcitrant to loss.
Asunto(s)
Genes de Plantas , Intrones/genética , Magnoliopsida/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Secuencia de Bases , Secuencia Conservada/genética , ADN Complementario/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Mimulus/genética , Motivos de Nucleótidos/genética , Oryza/genética , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo Genético , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de ADNRESUMEN
Phenology and the timing of development are often under selection, but at the same time influence selection on other traits by controlling how traits are expressed across seasons. Plants often exhibit high natural genetic variation in phenology when grown in controlled environments, and many genetic and molecular mechanisms underlying phenology have been dissected. There remains considerable diversity of germination and flowering time within populations in the wild and the contribution of genetics to phenological variation of wild plants is largely unknown. We obtained collection dates of naturally inbred Arabidopsis thaliana accessions from nature and compared them to experimental data on the descendant inbred lines that we synthesized from two new and 155 published controlled experiments. We tested whether the genetic variation in flowering and germination timing from experiments predicted the phenology of the same inbred lines in nature. We found that genetic variation in phenology from controlled experiments significantly, but weakly, predicts day of collection from the wild, even when measuring collection date with accumulated photothermal units. We found that experimental flowering time breeding values were correlated to wild flowering time at location of origin estimated from herbarium collections. However, local variation in collection dates within a region was not explained by genetic variation in experiments, suggesting high plasticity across small-scale environmental gradients. This apparent low heritability in natural populations may suggest strong selection or many generations are required for phenological adaptation and the emergence of genetic clines in phenology.
RESUMEN
AIM: Patterns of individual variation are key to testing hypotheses about the mechanisms underlying biogeographic patterns. If species distributions are determined by environmental constraints, then populations near range margins may have reduced performance and be adapted to harsher environments. Model organisms are potentially important systems for biogeographical studies, given the available range-wide natural history collections, and the importance of providing biogeographical context to their genetic and phenotypic diversity. LOCATION: Global. TAXON: Arabidopsis thaliana ("Arabidopsis"). METHODS: We fit occurrence records to climate data, and then projected the distribution of Arabidopsis under last glacial maximum, current, and future climates. We confronted model predictions with individual performance measured on 2,194 herbarium specimens, and we asked whether predicted suitability was associated with life-history and genomic variation measured on ~900 natural accessions. RESULTS: The most important climate variables constraining the Arabidopsis distribution were winter cold in northern and high elevation regions and summer heat in southern regions. Herbarium specimens from regions with lower habitat suitability in both northern and southern regions were smaller, supporting the hypothesis that the distribution of Arabidopsis is constrained by climate-associated factors. Climate anomalies partly explained interannual variation in herbarium specimen size, but these did not closely correspond to local limiting factors identified in the distribution model. Late-flowering genotypes were absent from the lowest suitability regions, suggesting slower life histories are only viable closer to the center of the realized niche. We identified glacial refugia farther north than previously recognized, as well as refugia concordant with previous population genetic findings. Lower latitude populations, known to be genetically distinct, are most threatened by future climate change. The recently colonized range of Arabidopsis was well-predicted by our native-range model applied to certain regions but not others, suggesting it has colonized novel climates. MAIN CONCLUSIONS: Integration of distribution models with performance data from vast natural history collections is a route forward for testing biogeographical hypotheses about species distributions and their relationship with evolutionary fitness across large scales.
RESUMEN
Northern red oak (Quercus rubra L.) is an ecologically and economically important forest tree native to North America. We present a chromosome-scale genome of Q. rubra generated by the combination of PacBio sequences and chromatin conformation capture (Hi-C) scaffolding. This is the first reference genome from the red oak clade (section Lobatae). The Q. rubra assembly spans 739â Mb with 95.27% of the genome in 12 chromosomes and 33,333 protein-coding genes. Comparisons to the genomes of Quercus lobata and Quercus mongolica revealed high collinearity, with intrachromosomal structural variants present. Orthologous gene family analysis with other tree species revealed that gene families associated with defense response were expanding and contracting simultaneously across the Q. rubra genome. Quercus rubra had the most CC-NBS-LRR and TIR-NBS-LRR resistance genes out of the 9 species analyzed. Terpene synthase gene family comparisons further reveal tandem gene duplications in TPS-b subfamily, similar to Quercus robur. Phylogenetic analysis also identified 4 subfamilies of the IGT/LAZY gene family in Q. rubra important for plant structure. Single major QTL regions were identified for vegetative bud break and marcescence, which contain candidate genes for further research, including a putative ortholog of the circadian clock constituent cryptochrome (CRY2) and 8 tandemly duplicated genes for serine protease inhibitors, respectively. Genome-environment associations across natural populations identified candidate abiotic stress tolerance genes and predicted performance in a common garden. This high-quality red oak genome represents an essential resource to the oak genomic community, which will expedite comparative genomics and biological studies in Quercus species.