Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 91(7)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28077654

RESUMEN

Human cytomegalovirus (HCMV) is the leading cause of congenital viral infection, and developing a prophylactic vaccine is of high priority to public health. We recently reported a replication-defective human cytomegalovirus with restored pentameric complex glycoprotein H (gH)/gL/pUL128-131 for prevention of congenital HCMV infection. While the quantity of vaccine-induced antibody responses can be measured in a viral neutralization assay, assessing the quality of such responses, including the ability of vaccine-induced antibodies to cross-neutralize the field strains of HCMV, remains a challenge. In this study, with a panel of neutralizing antibodies from three healthy human donors with natural HCMV infection or a vaccinated animal, we mapped eight sites on the dominant virus-neutralizing antigen-the pentameric complex of glycoprotein H (gH), gL, and pUL128, pUL130, and pUL131. By evaluating the site-specific antibodies in vaccine immune sera, we demonstrated that vaccination elicited functional antiviral antibodies to multiple neutralizing sites in rhesus macaques, with quality attributes comparable to those of CMV hyperimmune globulin. Furthermore, these immune sera showed antiviral activities against a panel of genetically distinct HCMV clinical isolates. These results highlighted the importance of understanding the quality of vaccine-induced antibody responses, which includes not only the neutralizing potency in key cell types but also the ability to protect against the genetically diverse field strains.IMPORTANCE HCMV is the leading cause of congenital viral infection, and development of a preventive vaccine is a high public health priority. To understand the strain coverage of vaccine-induced immune responses in comparison with natural immunity, we used a panel of broadly neutralizing antibodies to identify the immunogenic sites of a dominant viral antigen-the pentameric complex. We further demonstrated that following vaccination of a replication-defective virus with the restored pentameric complex, rhesus macaques can develop broadly neutralizing antibodies targeting multiple immunogenic sites of the pentameric complex. Such analyses of site-specific antibody responses are imperative to our assessment of the quality of vaccine-induced immunity in clinical studies.


Asunto(s)
Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/química , Infecciones por Citomegalovirus/prevención & control , Citomegalovirus/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos , Línea Celular , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Mapeo Epitopo , Humanos , Macaca mulatta , Unión Proteica , Conejos , Vacunación , Vacunas Virales/administración & dosificación , Internalización del Virus
2.
J Biol Chem ; 290(26): 15985-95, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25947373

RESUMEN

Congenital infection of human cytomegalovirus (HCMV) is one of the leading causes of nongenetic birth defects, and development of a prophylactic vaccine against HCMV is of high priority for public health. The gH/gL/pUL128-131 pentameric complex mediates HCMV entry into endothelial and epithelial cells, and it is a major target for neutralizing antibody responses. To better understand the mechanism by which antibodies interact with the epitopes of the gH/gL/pUL128-131 pentameric complex resulting in viral neutralization, we expressed and purified soluble gH/gL/pUL128-131 pentameric complex and gH/gL from Chinese hamster ovary cells to >95% purity. The soluble gH/gL, which exists predominantly as (gH/gL)2 homodimer with a molecular mass of 220 kDa in solution, has a stoichiometry of 1:1 and a pI of 6.0-6.5. The pentameric complex has a molecular mass of 160 kDa, a stoichiometry of 1:1:1:1:1, and a pI of 7.4-8.1. The soluble pentameric complex, but not gH/gL, adsorbs 76% of neutralizing activities in HCMV human hyperimmune globulin, consistent with earlier reports that the most potent neutralizing epitopes for blocking epithelial infection are unique to the pentameric complex. Functionally, the soluble pentameric complex, but not gH/gL, blocks viral entry to epithelial cells in culture. Our results highlight the importance of the gH/gL/pUL128-131 pentameric complex in HCMV vaccine design and emphasize the necessity to monitor the integrity of the pentameric complex during the vaccine manufacturing process.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/inmunología , Células Epiteliales/virología , Epítopos/inmunología , Glicoproteínas de Membrana/inmunología , Proteínas del Envoltorio Viral/inmunología , Internalización del Virus , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Cricetinae , Citomegalovirus/genética , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/inmunología , Células Epiteliales/inmunología , Epítopos/genética , Humanos , Glicoproteínas de Membrana/genética , Unión Proteica , Proteínas del Envoltorio Viral/genética
3.
AAPS J ; 25(1): 10, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482268

RESUMEN

The rapid development of biologics and vaccines in response to the current pandemic has highlighted the need for robust platform assays to characterize diverse biopharmaceuticals. A critical aspect of biopharmaceutical development is achieving a highly pure product, especially with respect to residual host cell material. Specifically, two important host cell impurities of focus within biopharmaceuticals are residual DNA and protein. In this work, a novel high-throughput host cell DNA quantitation assay was developed for rapid screening of complex vaccine drug substance samples. The developed assay utilizes the commercially available, fluorescent-sensitive Picogreen dye within a 96-well plate configuration to allow for a cost effective and rapid analysis. The assay was applied to in-process biopharmaceutical samples with known interferences to the dye, including RNA and protein. An enzymatic digestion pre-treatment was found to overcome these interferences and thus allow this method to be applied to wide-ranging, diverse analyses. In addition, the use of deoxycholate in the digestion treatment allowed for disruption of interactions in a given sample matrix in order to more accurately and selectively quantitate DNA. Critical analytical figures of merit for assay performance, such as precision and spike recovery, were evaluated and successfully demonstrated. This new analytical method can thus be successfully applied to both upstream and downstream process analysis for biologics and vaccines using an innovative and automated high-throughput approach.


Asunto(s)
Productos Biológicos , Vacunas , Proyectos de Investigación , ADN
4.
J Pharm Biomed Anal ; 40(4): 964-70, 2006 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-16242286

RESUMEN

This report describes a rapid and accurate reversed phase HPLC method for the simultaneous quantitation of multiple surfactants in various bioprocess solution matrices including cell lysates. Separation and quantitation of a mixture of the cationic detergent domiphen bromide from the non-ionic detergent Triton X-100 in crude cell mixtures can be achieved within 15 min using a TSK-gel C18-NPR reversed phase column and an aqueous mobile phase gradient of acetonitrile:water with the reagent PIC-B8 as ion-pairing modifier. The linear dynamic range for quantitation of domiphen bromide (DB) and Triton in this assay extends from 20 to 2000 microM. Linear regression analyses from the standard curve determinations showed an R2 of > or = 0.990. The assay does not show any interferences from proteins or other cellular contaminants such as nucleic acids. The assay has been used to evaluate clearance of these compounds throughout the purification process of an adenovirus-based vaccine candidate, as well as to determine the effects of process changes on detergent clearance.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Tensoactivos/análisis , Vacunas de ADN/aislamiento & purificación , Biotecnología/métodos , Octoxinol/análisis , Octoxinol/química , Compuestos de Amonio Cuaternario/análisis , Compuestos de Amonio Cuaternario/química , Reproducibilidad de los Resultados , Tensoactivos/química
5.
J Mol Biol ; 381(1): 229-37, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18585738

RESUMEN

The full-length human papillomavirus 16 major capsid protein L1 is expressed in Saccharomyces cerevisiae as virus-like particles (VLPs). However, yeast-expressed human papillomavirus 16 particles are irregular in shape and are prone to aggregate. When disassembled and reassembled, the resulting particles have improved stability and solubility. We have examined VLP dissociation and reassembly to define the important features of the assembly mechanism. We found that the VLPs rapidly disassemble at pH 8.2 and low ionic strength in the presence of low concentrations of reducing agents. The pH dependence of assembly kinetics and extent of assembly under reducing conditions were differentially sensitive to ionic strength. Assembly at pH 5.2 was very fast and led to heavily aggregated particles. This sort of kinetic trap is expected for overinitiated assembly. We observed that reassembly at pH 6.2, 7.2, and 8.2 yielded regular particles over a broad range of ionic strength. At these three pH values, assembly was quantitative at 1 M NaCl. At pH 7.2, much more than at pH 6.2 or pH 8.2, assembly decreased monotonically with ionic strength. The free energy of association ranged from -8 to -10 kcal/mol per pentamer. The effect of pH on assembly was further investigated by examining dissociation of reassembled particles. Though indistinguishable by negative stain electron microscopy, particles assembled at pH 7.2 disassembled slower than pH 5.2, 6.2, or 8.2 VLPs. We hypothesize that pH 7.2 assembly reactions lead to formation of particles with conformationally different interactions.


Asunto(s)
Papillomavirus Humano 16/química , Papillomavirus Humano 16/metabolismo , Virión/química , Virión/metabolismo , Ensamble de Virus , Disulfuros/metabolismo , Papillomavirus Humano 16/ultraestructura , Humanos , Microscopía Electrónica de Transmisión , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Virión/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA