Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Alzheimers Dement ; 20(3): 1894-1912, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38148705

RESUMEN

INTRODUCTION: The "prion-like" features of Alzheimer's disease (AD) tauopathy and its relationship with amyloid-ß (Aß) have never been experimentally studied in primates phylogenetically close to humans. METHODS: We injected 17 macaques in the entorhinal cortex with nanograms of seeding-competent tau aggregates purified from AD brains or control extracts from aged-matched healthy brains, with or without intracerebroventricular co-injections of oligomeric-Aß. RESULTS: Pathological tau injection increased cerebrospinal fluid (CSF) p-tau181 concentration after 18 months. Tau pathology spreads from the entorhinal cortex to the hippocampal trisynaptic loop and the cingulate cortex, resuming the experimental progression of Braak stage I to IV. Many AD-related molecular networks were impacted by tau seeds injections regardless of Aß injections in proteomic analyses. However, we found mature neurofibrillary tangles, increased CSF total-tau concentration, and pre- and postsynaptic degeneration only in Aß co-injected macaques. DISCUSSION: Oligomeric-Aß mediates the maturation of tau pathology and its neuronal toxicity in macaques but not its initial spreading. HIGHLIGHTS: This study supports the "prion-like" properties of misfolded tau extracted from AD brains. This study empirically validates the Braak staging in an anthropomorphic brain. This study highlights the role of oligomeric Aß in driving the maturation and toxicity of tau pathology. This work establishes a novel animal model of early sporadic AD that is closer to the human pathology.


Asunto(s)
Enfermedad de Alzheimer , Priones , Animales , Humanos , Anciano , Enfermedad de Alzheimer/patología , Macaca/metabolismo , Proteómica , Proteínas tau/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38858083

RESUMEN

Decades of research have identified the pathological and pathophysiological hallmarks of Parkinson's disease (PD): profound deficit in brain dopamine and other monoamines, pathological α-synuclein aggregation, synaptic and neuronal network dysfunction, aberrant proteostasis, altered energy homeostasis, inflammation, and neuronal cell death. The purpose of this contribution is to present the phenocopy aspect, pathogenic, and etiologic nonhuman primate (NHP) models of PD to readers with limited prior knowledge of PD so that they are ready to start working on PD. How NHPs, the closest species to man on which we can model diseases, contribute to the knowledge progress and how these models represent an invaluable translational step in therapeutic development are highlighted.

3.
NPJ Parkinsons Dis ; 10(1): 141, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090150

RESUMEN

Lysosomal impairment is strongly implicated in Parkinson's disease (PD). Among the several PD-linked genes, the ATP13A2 gene, associated with the PARK9 locus, encodes a transmembrane lysosomal P5-type ATPase. Mutations in the ATP13A2 gene were primarily identified as the cause of Kufor-Rakeb syndrome (KRS), a juvenile-onset form of PD. Subsequently, an increasing list of several mutations has been described. These mutations result in truncation of the ATP13A2 protein, leading to a loss of function but surprisingly causing heterogeneity and variability in the clinical symptoms associated with different brain pathologies. In vitro studies show that its loss compromises lysosomal function, contributing to cell death. To understand the role of ATP13A2 dysfunction in disease, we disrupted its expression through a viral vector-based approach in nonhuman primates. Here, in this pilot study, we injected bilaterally into the substantia nigra of macaques, a lentiviral vector expressing an ATP13A2 small hairpin RNA. Animals were terminated five months later, and brains were harvested and compared with historical non-injected control brains to evaluate cerebral pathological markers known to be affected in KRS and PD. We characterised the pattern of dopaminergic loss in the striatum and the substantia nigra, the regional distribution of α-synuclein immunoreactivity in several brain structures, and its pathological status (i.e., S129 phosphorylation), the accumulation of heavy metals in nigral sections and occurrence of lysosomal dysfunction. This proof-of-concept experiment highlights the potential value of lentivirus-mediated ATP13A2 silencing to induce significant and ongoing degeneration in the nigrostriatal pathway, α-synuclein pathology, and iron accumulation in nonhuman primates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA