Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(14): e112817, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37232029

RESUMEN

The facultative intracellular pathogen Brucella abortus interacts with several organelles of the host cell to reach its replicative niche inside the endoplasmic reticulum. However, little is known about the interplay between the intracellular bacteria and the host cell mitochondria. Here, we showed that B. abortus triggers substantive mitochondrial network fragmentation, accompanied by mitophagy and the formation of mitochondrial Brucella-containing vacuoles during the late steps of cellular infection. Brucella-induced expression of the mitophagy receptor BNIP3L is essential for these events and relies on the iron-dependent stabilisation of the hypoxia-inducible factor 1α. Functionally, BNIP3L-mediated mitophagy appears to be advantageous for bacterial exit from the host cell as BNIP3L depletion drastically reduces the number of reinfection events. Altogether, these findings highlight the intricate link between Brucella trafficking and the mitochondria during host cell infection.


Asunto(s)
Brucella abortus , Mitofagia , Brucella abortus/metabolismo , Vacuolas/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias
2.
Proc Natl Acad Sci U S A ; 121(20): e2310348121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709922

RESUMEN

The evolutionary conserved YopJ family comprises numerous type-III-secretion system (T3SS) effectors of diverse mammalian and plant pathogens that acetylate host proteins to dampen immune responses. Acetylation is mediated by a central acetyltransferase domain that is flanked by conserved regulatory sequences, while a nonconserved N-terminal extension encodes the T3SS-specific translocation signal. Bartonella spp. are facultative-intracellular pathogens causing intraerythrocytic bacteremia in their mammalian reservoirs and diverse disease manifestations in incidentally infected humans. Bartonellae do not encode a T3SS, but most species possess a type-IV-secretion system (T4SS) to translocate Bartonella effector proteins (Beps) into host cells. Here we report that the YopJ homologs present in Bartonellae species represent genuine T4SS effectors. Like YopJ family T3SS effectors of mammalian pathogens, the "Bartonella YopJ-like effector A" (ByeA) of Bartonella taylorii also targets MAP kinase signaling to dampen proinflammatory responses, however, translocation depends on a functional T4SS. A split NanoLuc luciferase-based translocation assay identified sequences required for T4SS-dependent translocation in conserved regulatory regions at the C-terminus and proximal to the N-terminus of ByeA. The T3SS effectors YopP from Yersinia enterocolitica and AvrA from Salmonella Typhimurium were also translocated via the Bartonella T4SS, while ByeA was not translocated via the Yersinia T3SS. Our data suggest that YopJ family T3SS effectors may have evolved from an ancestral T4SS effector, such as ByeA of Bartonella. In this evolutionary scenario, the signal for T4SS-dependent translocation encoded by N- and C-terminal sequences remained functional in the derived T3SS effectors due to the essential role these sequences coincidentally play in regulating acetyltransferase activity.


Asunto(s)
Proteínas Bacterianas , Bartonella , Sistemas de Secreción Tipo IV , Bartonella/metabolismo , Bartonella/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Sistemas de Secreción Tipo IV/metabolismo , Sistemas de Secreción Tipo IV/genética , Transporte de Proteínas , Animales
3.
Proc Natl Acad Sci U S A ; 119(25): e2202059119, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35714289

RESUMEN

The bacterial genus Bartonella comprises numerous emerging pathogens that cause a broad spectrum of disease manifestations in humans. The targets and mechanisms of the anti-Bartonella immune defense are ill-defined and bacterial immune evasion strategies remain elusive. We found that experimentally infected mice resolved Bartonella infection by mounting antibody responses that neutralized the bacteria, preventing their attachment to erythrocytes and suppressing bacteremia independent of complement or Fc receptors. Bartonella-neutralizing antibody responses were rapidly induced and depended on CD40 signaling but not on affinity maturation. We cloned neutralizing monoclonal antibodies (mAbs) and by mass spectrometry identified the bacterial autotransporter CFA (CAMP-like factor autotransporter) as a neutralizing antibody target. Vaccination against CFA suppressed Bartonella bacteremia, validating CFA as a protective antigen. We mapped Bartonella-neutralizing mAb binding to a domain in CFA that we found is hypervariable in both human and mouse pathogenic strains, indicating mutational antibody evasion at the Bartonella subspecies level. These insights into Bartonella immunity and immune evasion provide a conceptual framework for vaccine development, identifying important challenges in this endeavor.


Asunto(s)
Anticuerpos Neutralizantes , Antígenos Bacterianos , Bacteriemia , Infecciones por Bartonella , Bartonella , Sistemas de Secreción Tipo V , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Bacteriemia/inmunología , Bacteriemia/microbiología , Bacteriemia/prevención & control , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/uso terapéutico , Bartonella/genética , Bartonella/inmunología , Infecciones por Bartonella/inmunología , Infecciones por Bartonella/microbiología , Infecciones por Bartonella/prevención & control , Clonación Molecular , Evasión Inmune , Ratones , Sistemas de Secreción Tipo V/inmunología , Vacunación
4.
PLoS Pathog ; 18(5): e1010489, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35580143

RESUMEN

Vertical transmission of Bartonella infection has been reported for several mammalian species including mice and humans. Accordingly, it is commonly held that acquired immunological tolerance contributes critically to the high prevalence of Bartonellae in wild-ranging rodent populations. Here we studied an experimental model of Bartonella infection in mice to assess the impact of maternal and newborn immune defense on vertical transmission and bacterial persistence in the offspring, respectively. Congenital infection was frequently observed in B cell-deficient mothers but not in immunocompetent dams, which correlated with a rapid onset of an antibacterial antibody response in infected WT animals. Intriguingly, B cell-deficient offspring with congenital infection exhibited long-term bacteremia whereas B cell-sufficient offspring cleared bacteremia within a few weeks after birth. Clearance of congenital Bartonella infection resulted in immunity against bacterial rechallenge, with the animals mounting Bartonella-neutralizing antibody responses of normal magnitude. These observations reveal a key role for humoral immune defense by the mother and offspring in preventing and eliminating vertical transmission. Moreover, congenital Bartonella infection does not induce humoral immune tolerance but results in anti-bacterial immunity, questioning the contribution of neonatal tolerance to Bartonella prevalence in wild-ranging rodents.


Asunto(s)
Bacteriemia , Infecciones por Bartonella , Bartonella , Animales , Bacteriemia/microbiología , Femenino , Transmisión Vertical de Enfermedad Infecciosa , Mamíferos , Ratones , Placenta , Embarazo
5.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33723071

RESUMEN

Small GTPases of the Ras-homology (Rho) family are conserved molecular switches that control fundamental cellular activities in eukaryotic cells. As such, they are targeted by numerous bacterial toxins and effector proteins, which have been intensively investigated regarding their biochemical activities and discrete target spectra; however, the molecular mechanism of target selectivity has remained largely elusive. Here we report a bacterial effector protein that selectively targets members of the Rac subfamily in the Rho family of small GTPases but none in the closely related Cdc42 or RhoA subfamilies. This exquisite target selectivity of the FIC domain AMP-transferase Bep1 from Bartonella rochalimae is based on electrostatic interactions with a subfamily-specific pair of residues in the nucleotide-binding G4 motif and the Rho insert helix. Residue substitutions at the identified positions in Cdc42 enable modification by Bep1, while corresponding Cdc42-like substitutions in Rac1 greatly diminish modification. Our study establishes a structural understanding of target selectivity toward Rac-subfamily GTPases and provides a highly selective tool for their functional analysis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Unión al GTP rac/química , Proteínas de Unión al GTP rac/metabolismo , Secuencia de Aminoácidos , Bartonella , Sitios de Unión , Modelos Moleculares , Familia de Multigenes , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Proteínas de Unión al GTP rac/genética
6.
PLoS Pathog ; 17(1): e1008548, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33508040

RESUMEN

Bartonellae are Gram-negative facultative-intracellular pathogens that use a type-IV-secretion system (T4SS) to translocate a cocktail of Bartonella effector proteins (Beps) into host cells to modulate diverse cellular functions. BepC was initially reported to act in concert with BepF in triggering major actin cytoskeletal rearrangements that result in the internalization of a large bacterial aggregate by the so-called 'invasome'. Later, infection studies with bepC deletion mutants and ectopic expression of BepC have implicated this effector in triggering an actin-dependent cell contractility phenotype characterized by fragmentation of migrating cells due to deficient rear detachment at the trailing edge, and BepE was shown to counterbalance this remarkable phenotype. However, the molecular mechanism of how BepC triggers cytoskeletal changes and the host factors involved remained elusive. Using infection assays, we show here that T4SS-mediated transfer of BepC is sufficient to trigger stress fiber formation in non-migrating epithelial cells and additionally cell fragmentation in migrating endothelial cells. Interactomic analysis revealed binding of BepC to a complex of the Rho guanine nucleotide exchange factor GEF-H1 and the serine/threonine-protein kinase MRCKα. Knock-out cell lines revealed that only GEF-H1 is required for mediating BepC-triggered stress fiber formation and inhibitor studies implicated activation of the RhoA/ROCK pathway downstream of GEF-H1. Ectopic co-expression of tagged versions of GEF-H1 and BepC truncations revealed that the C-terminal 'Bep intracellular delivery' (BID) domain facilitated anchorage of BepC to the plasma membrane, whereas the N-terminal 'filamentation induced by cAMP' (FIC) domain facilitated binding of GEF-H1. While FIC domains typically mediate post-translational modifications, most prominently AMPylation, a mutant with quadruple amino acid exchanges in the putative active site indicated that the BepC FIC domain acts in a non-catalytic manner to activate GEF-H1. Our data support a model in which BepC activates the RhoA/ROCK pathway by re-localization of GEF-H1 from microtubules to the plasma membrane.


Asunto(s)
Actinas/metabolismo , Proteínas Bacterianas/metabolismo , Bartonella/metabolismo , Membrana Celular/metabolismo , Proteína C/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Fibras de Estrés/fisiología , Proteínas Bacterianas/genética , Citoesqueleto/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Células HeLa , Humanos , Proteína C/genética , Factores de Intercambio de Guanina Nucleótido Rho/genética
7.
Annu Rev Microbiol ; 70: 341-60, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27482742

RESUMEN

The ubiquitous proteins with FIC (filamentation induced by cyclic AMP) domains use a conserved enzymatic machinery to modulate the activity of various target proteins by posttranslational modification, typically AMPylation. Following intensive study of the general properties of FIC domain catalysis, diverse molecular activities and biological functions of these remarkably versatile proteins are now being revealed. Here, we review the biological diversity of FIC domain proteins and summarize the underlying structure-function relationships. The original and most abundant genuine bacterial FIC domain proteins are toxins that use diverse molecular activities to interfere with bacterial physiology in various, yet ill-defined, biological contexts. Host-targeted virulence factors have evolved repeatedly out of this pool by exaptation of the enzymatic FIC domain machinery for the manipulation of host cell signaling in favor of bacterial pathogens. The single human FIC domain protein HypE (FICD) has a specific function in the regulation of protein stress responses.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biodiversidad , Variación Genética , Modelos Moleculares , Dominios Proteicos
8.
J Cell Sci ; 131(4)2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29361547

RESUMEN

Entry of the facultative intracellular pathogen Brucella into host cells results in the formation of endosomal Brucella-containing vacuoles (eBCVs) that initially traffic along the endocytic pathway. eBCV acidification triggers the expression of a type IV secretion system that translocates bacterial effector proteins into host cells. This interferes with lysosomal fusion of eBCVs and supports their maturation to replicative Brucella-containing vacuoles (rBCVs). Bacteria replicate in rBCVs to large numbers, eventually occupying most of the cytoplasmic volume. As rBCV membranes tightly wrap each individual bacterium, they are constantly being expanded and remodeled during exponential bacterial growth. rBCVs are known to carry endoplasmic reticulum (ER) markers; however, the relationship of the vacuole to the genuine ER has remained elusive. Here, we have reconstructed the 3-dimensional ultrastructure of rBCVs and associated ER by correlative structured illumination microscopy (SIM) and focused ion beam/scanning electron microscopic tomography (FIB/SEM). Studying B. abortus-infected HeLa cells and trophoblasts derived from B. melitensis-infected mice, we demonstrate that rBCVs are complex and interconnected compartments that are continuous with neighboring ER cisternae, thus supporting a model that rBCVs are extensions of genuine ER.


Asunto(s)
Brucella abortus/ultraestructura , Brucella melitensis/ultraestructura , Retículo Endoplásmico/ultraestructura , Vacuolas/ultraestructura , Animales , Brucella abortus/patogenicidad , Brucella melitensis/patogenicidad , Citoplasma/microbiología , Retículo Endoplásmico/microbiología , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Ratones , Microscopía Electrónica de Rastreo , Trofoblastos/microbiología , Trofoblastos/ultraestructura , Sistemas de Secreción Tipo IV/ultraestructura , Vacuolas/microbiología
9.
Genome Res ; 27(12): 2083-2095, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29141959

RESUMEN

Accurate annotation of all protein-coding sequences (CDSs) is an essential prerequisite to fully exploit the rapidly growing repertoire of completely sequenced prokaryotic genomes. However, large discrepancies among the number of CDSs annotated by different resources, missed functional short open reading frames (sORFs), and overprediction of spurious ORFs represent serious limitations. Our strategy toward accurate and complete genome annotation consolidates CDSs from multiple reference annotation resources, ab initio gene prediction algorithms and in silico ORFs (a modified six-frame translation considering alternative start codons) in an integrated proteogenomics database (iPtgxDB) that covers the entire protein-coding potential of a prokaryotic genome. By extending the PeptideClassifier concept of unambiguous peptides for prokaryotes, close to 95% of the identifiable peptides imply one distinct protein, largely simplifying downstream analysis. Searching a comprehensive Bartonella henselae proteomics data set against such an iPtgxDB allowed us to unambiguously identify novel ORFs uniquely predicted by each resource, including lipoproteins, differentially expressed and membrane-localized proteins, novel start sites and wrongly annotated pseudogenes. Most novelties were confirmed by targeted, parallel reaction monitoring mass spectrometry, including unique ORFs and single amino acid variations (SAAVs) identified in a re-sequenced laboratory strain that are not present in its reference genome. We demonstrate the general applicability of our strategy for genomes with varying GC content and distinct taxonomic origin. We release iPtgxDBs for B. henselae, Bradyrhizobium diazoefficiens and Escherichia coli and the software to generate both proteogenomics search databases and integrated annotation files that can be viewed in a genome browser for any prokaryote.


Asunto(s)
Proteínas Bacterianas/genética , Bartonella henselae/genética , Bradyrhizobium/genética , Escherichia coli/genética , Genoma Bacteriano , Proteogenómica , Bases de Datos de Proteínas , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Programas Informáticos
10.
Cell Microbiol ; 21(3): e13004, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30644157

RESUMEN

The α-proteobacterial genus Bartonella comprises a large number of facultative intracellular pathogens that share a common lifestyle hallmarked by hemotrophic infection and arthropod transmission. Speciation in the four deep-branching lineages (L1-L4) occurred by host adaptation facilitating the establishment of long lasting bacteraemia in specific mammalian reservoir host(s). Two distinct type-IV-secretion systems (T4SSs) acquired horizontally by different Bartonella lineages mediate essential host interactions during infection and represent key innovations for host adaptation. The Trw-T4SS confined to the species-rich L4 mediates host-specific erythrocyte infection and likely has functionally replaced flagella as ancestral virulence factors implicated in erythrocyte colonisation by bartonellae of the other lineages. The VirB/VirD4-T4SS translocates Bartonella effector proteins (Bep) into various host cell types to modulate diverse cellular and innate immune functions involved in systemic spreading of bacteria following intradermal inoculation. Independent acquisition of the virB/virD4/bep locus by L1, L3, and L4 was likely driven by arthropod vectors associated with intradermal inoculation of bacteria rather than facilitating direct access to blood. Subsequently, adaptation to colonise specific niches in the new host has shaped the evolution of complex species-specific Bep repertoires. This diversification of the virulence factor repertoire of Bartonella spp. represents a remarkable example for parallel evolution of host adaptation.


Asunto(s)
Adaptación Biológica , Infecciones por Bartonella/microbiología , Bartonella/crecimiento & desarrollo , Evolución Molecular , Interacciones Huésped-Patógeno , Sistemas de Secreción Tipo IV/metabolismo , Factores de Virulencia/metabolismo , Animales , Artrópodos/microbiología , Transmisión de Enfermedad Infecciosa , Mamíferos , Sistemas de Secreción Tipo IV/genética , Factores de Virulencia/genética
11.
Cell Microbiol ; 21(11): e13068, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31231937

RESUMEN

The processes underlying host adaptation by bacterial pathogens remain a fundamental question with relevant clinical, ecological, and evolutionary implications. Zoonotic pathogens of the genus Bartonella constitute an exceptional model to study these aspects. Bartonellae have undergone a spectacular diversification into multiple species resulting from adaptive radiation. Specific adaptations of a complex facultative intracellular lifestyle have enabled the colonisation of distinct mammalian reservoir hosts. This remarkable host adaptability has a multifactorial basis and is thought to be driven by horizontal gene transfer (HGT) and recombination among a limited genus-specific pan genome. Recent functional and evolutionary studies revealed that the conserved Bartonella gene transfer agent (BaGTA) mediates highly efficient HGT and could thus drive this evolution. Here, we review the recent progress made towards understanding BaGTA evolution, function, and its role in the evolution and pathogenesis of Bartonella spp. We notably discuss how BaGTA could have contributed to genome diversification through recombination of beneficial traits that underlie host adaptability. We further address how BaGTA may counter the accumulation of deleterious mutations in clonal populations (Muller's ratchet), which are expected to occur through the recurrent transmission bottlenecks during the complex infection cycle of these pathogens in their mammalian reservoir hosts and arthropod vectors.


Asunto(s)
Bartonella/genética , Bartonella/patogenicidad , Transferencia de Gen Horizontal/genética , Adaptación Fisiológica/genética , Animales , Proteínas Bacterianas/genética , Bartonella/crecimiento & desarrollo , Bartonella/metabolismo , Evolución Molecular , Transferencia de Gen Horizontal/fisiología , Interacciones Microbiota-Huesped , Mutación , Recombinación Genética/genética , Origen de Réplica/genética , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo
12.
Nucleic Acids Res ; 46(18): 9309-9320, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30215772

RESUMEN

Perturbation of gene expression by means of synthetic small interfering RNAs (siRNAs) is a powerful way to uncover gene function. However, siRNA technology suffers from sequence-specific off-target effects and from limitations in knock-down efficiency. In this study, we assess a further problem: unintended effects of siRNA transfections on cellular fitness/proliferation. We show that the nucleotide compositions of siRNAs at specific positions have reproducible growth-restricting effects on mammalian cells in culture. This is likely distinct from hybridization-dependent off-target effects, since each nucleotide residue is seen to be acting independently and additively. The effect is robust and reproducible across different siRNA libraries and also across various cell lines, including human and mouse cells. Analyzing the growth inhibition patterns in correlation to the nucleotide sequence of the siRNAs allowed us to build a predictor that can estimate growth-restricting effects for any arbitrary siRNA sequence. Competition experiments with co-transfected siRNAs further suggest that the growth-restricting effects might be linked to an oversaturation of the cellular miRNA machinery, thus disrupting endogenous miRNA functions at large. We caution that competition between siRNA molecules could complicate the interpretation of double-knockdown or epistasis experiments, and potential interactions with endogenous miRNAs can be a factor when assaying cell growth or viability phenotypes.


Asunto(s)
Proliferación Celular/genética , MicroARNs/genética , Hibridación de Ácido Nucleico , Interferencia de ARN , ARN Interferente Pequeño/genética , Células A549 , Animales , Línea Celular , Supervivencia Celular/genética , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Expresión Génica , Células HeLa , Humanos , Ratones , Transfección
13.
PLoS Genet ; 13(10): e1007077, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29073136

RESUMEN

Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal-the BID (Bep intracellular delivery) domain-similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the evolution of host-targeted effector proteins.


Asunto(s)
Antitoxinas/metabolismo , Sistemas de Secreción Bacterianos/genética , Sistemas de Secreción Bacterianos/metabolismo , Toxinas Bacterianas/metabolismo , Bartonella/genética , Bartonella/patogenicidad , Secuencia de Aminoácidos , Antitoxinas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Infecciones por Bartonella/microbiología , Conjugación Genética , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Plásmidos , Homología de Secuencia , Virulencia
14.
BMC Bioinformatics ; 20(1): 564, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718539

RESUMEN

BACKGROUND: Analysing large and high-dimensional biological data sets poses significant computational difficulties for bioinformaticians due to lack of accessible tools that scale to hundreds of millions of data points. RESULTS: We developed a novel machine learning command line tool called PyBDA for automated, distributed analysis of big biological data sets. By using Apache Spark in the backend, PyBDA scales to data sets beyond the size of current applications. It uses Snakemake in order to automatically schedule jobs to a high-performance computing cluster. We demonstrate the utility of the software by analyzing image-based RNA interference data of 150 million single cells. CONCLUSION: PyBDA allows automated, easy-to-use data analysis using common statistical methods and machine learning algorithms. It can be used with simple command line calls entirely making it accessible to a broad user base. PyBDA is available at https://pybda.rtfd.io.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Automatización , Metodologías Computacionales , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático
15.
Bioinformatics ; 34(13): i519-i527, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29950000

RESUMEN

Motivation: Pathway reconstruction has proven to be an indispensable tool for analyzing the molecular mechanisms of signal transduction underlying cell function. Nested effects models (NEMs) are a class of probabilistic graphical models designed to reconstruct signalling pathways from high-dimensional observations resulting from perturbation experiments, such as RNA interference (RNAi). NEMs assume that the short interfering RNAs (siRNAs) designed to knockdown specific genes are always on-target. However, it has been shown that most siRNAs exhibit strong off-target effects, which further confound the data, resulting in unreliable reconstruction of networks by NEMs. Results: Here, we present an extension of NEMs called probabilistic combinatorial nested effects models (pc-NEMs), which capitalize on the ancillary siRNA off-target effects for network reconstruction from combinatorial gene knockdown data. Our model employs an adaptive simulated annealing search algorithm for simultaneous inference of network structure and error rates inherent to the data. Evaluation of pc-NEMs on simulated data with varying number of phenotypic effects and noise levels as well as real data demonstrates improved reconstruction compared to classical NEMs. Application to Bartonella henselae infection RNAi screening data yielded an eight node network largely in agreement with previous works, and revealed novel binary interactions of direct impact between established components. Availability and implementation: The software used for the analysis is freely available as an R package at https://github.com/cbg-ethz/pcNEM.git. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , Interferencia de ARN , Transducción de Señal , Programas Informáticos , Algoritmos , Biología Computacional/métodos , Humanos , Modelos Estadísticos , ARN Interferente Pequeño
16.
Proc Natl Acad Sci U S A ; 113(5): E529-37, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26787847

RESUMEN

Filamentation induced by cyclic AMP (FIC)-domain enzymes catalyze adenylylation or other posttranslational modifications of target proteins to control their function. Recently, we have shown that Fic enzymes are autoinhibited by an α-helix (αinh) that partly obstructs the active site. For the single-domain class III Fic proteins, the αinh is located at the C terminus and its deletion relieves autoinhibition. However, it has remained unclear how activation occurs naturally. Here, we show by structural, biophysical, and enzymatic analyses combined with in vivo data that the class III Fic protein NmFic from Neisseria meningitidis gets autoadenylylated in cis, thereby autonomously relieving autoinhibition and thus allowing subsequent adenylylation of its target, the DNA gyrase subunit GyrB. Furthermore, we show that NmFic activation is antagonized by tetramerization. The combination of autoadenylylation and tetramerization results in nonmonotonic concentration dependence of NmFic activity and a pronounced lag phase in the progress of target adenylylation. Bioinformatic analyses indicate that this elaborate dual-control mechanism is conserved throughout class III Fic proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopolímeros/metabolismo , AMP Cíclico/metabolismo , Neisseria meningitidis/enzimología , Nucleotidiltransferasas/metabolismo , Girasa de ADN/metabolismo , Modelos Moleculares
17.
Curr Top Microbiol Immunol ; 413: 269-295, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29536363

RESUMEN

Bartonella and Brucella species comprise closely related genera of the order Rhizobiales within the class α-proteobacteria. Both groups of bacteria are mammalian pathogens with a facultative intracellular lifestyle and are capable of causing chronic infections, but members of each genus have evolved broadly different infection and transmission strategies. While Brucella spp. transmit in general via the reproductive tract in their natural hosts, the Bartonella spp. have evolved to transmit via arthropod vectors. However, a shared feature of both groups of pathogens is their reliance on type IV secretion systems (T4SSs) to interact with cells in their mammalian hosts. The genomes of Bartonella spp. encode three types of T4SS, Trw, Vbh/TraG, and VirB/VirD4, whereas those of Brucella spp. uniformly contain a single T4SS of the VirB type. The VirB systems of Bartonella and Brucella are associated with distinct groups of effector proteins that collectively mediate interactions with host cells. This chapter discusses recent findings on the role of T4SS in the biology of Bartonella spp. and Brucella spp. with emphasis on effector repertoires, on recent advances in our understanding of their evolution, how individual effectors function at the molecular level, and on the consequences of these interactions for cellular and immune responses in the host.


Asunto(s)
Bartonella , Brucella , Animales , Proteínas Bacterianas , Interacciones Huésped-Patógeno
18.
Nature ; 482(7383): 107-10, 2012 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-22266942

RESUMEN

Fic proteins that are defined by the ubiquitous FIC (filamentation induced by cyclic AMP) domain are known to catalyse adenylylation (also called AMPylation); that is, the transfer of AMP onto a target protein. In mammalian cells, adenylylation of small GTPases through Fic proteins injected by pathogenic bacteria can cause collapse of the actin cytoskeleton and cell death. It is unknown how this potentially deleterious adenylylation activity is regulated in the widespread Fic proteins that are found in all domains of life and that are thought to have critical roles in intrinsic signalling processes. Here we show that FIC-domain-mediated adenylylation is controlled by a conserved mechanism of ATP-binding-site obstruction that involves an inhibitory α-helix (α(inh)) with a conserved (S/T)XXXE(G/N) motif, and that in this mechanism the invariable glutamate competes with ATP γ-phosphate binding. Consistent with this, FIC-domain-mediated growth arrest of bacteria by the VbhT toxin of Bartonella schoenbuchensis is intermolecularly repressed by the VbhA antitoxin through tight binding of its α(inh) to the FIC domain of VbhT, as shown by structure and function analysis. Furthermore, structural comparisons with other bacterial Fic proteins, such as Fic of Neisseria meningitidis and of Shewanella oneidensis, show that α(inh) frequently constitutes an amino-terminal or carboxy-terminal extension to the FIC domain, respectively, partially obstructing the ATP binding site in an intramolecular manner. After mutation of the inhibitory motif in various Fic proteins, including the human homologue FICD (also known as HYPE), adenylylation activity is considerably boosted, consistent with the anticipated relief of inhibition. Structural homology modelling of all annotated Fic proteins indicates that inhibition by α(inh) is universal and conserved through evolution, as the inhibitory motif is present in ∼90% of all putatively adenylylation-active FIC domains, including examples from all domains of life and from viruses. Future studies should reveal how intrinsic or extrinsic factors modulate adenylylation activity by weakening the interaction of α(inh) with the FIC active site.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , AMP Cíclico/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Bartonella , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Catálisis , Dominio Catalítico , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ácido Glutámico/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Viabilidad Microbiana , Modelos Moleculares , Peso Molecular , Neisseria meningitidis , Nucleotidiltransferasas , Estructura Terciaria de Proteína , Shewanella
19.
Appl Environ Microbiol ; 83(12)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28411218

RESUMEN

Bacterial conjugation is a mechanism of horizontal DNA transfer. The relaxase TrwC of the conjugative plasmid R388 cleaves one strand of the transferred DNA at the oriT gene, covalently attaches to it, and leads the single-stranded DNA (ssDNA) into the recipient cell. In addition, TrwC catalyzes site-specific integration of the transferred DNA into its target sequence present in the genome of the recipient bacterium. Here, we report the analysis of the efficiency and specificity of the integrase activity of TrwC in human cells, using the type IV secretion system of the human pathogen Bartonella henselae to introduce relaxase-DNA complexes. Compared to Mob relaxase from plasmid pBGR1, we found that TrwC mediated a 10-fold increase in the rate of plasmid DNA transfer to human cells and a 100-fold increase in the rate of chromosomal integration of the transferred DNA. We used linear amplification-mediated PCR and plasmid rescue to characterize the integration pattern in the human genome. DNA sequence analysis revealed mostly reconstituted oriT sequences, indicating that TrwC is active and recircularizes transferred DNA in human cells. One TrwC-mediated site-specific integration event was detected, proving that TrwC is capable of mediating site-specific integration in the human genome, albeit with very low efficiency compared to the rate of random integration. Our results suggest that TrwC may stabilize the plasmid DNA molecules in the nucleus of the human cell, probably by recircularization of the transferred DNA strand. This stabilization would increase the opportunities for integration of the DNA by the host machinery.IMPORTANCE Different biotechnological applications, including gene therapy strategies, require permanent modification of target cells. Long-term expression is achieved either by extrachromosomal persistence or by integration of the introduced DNA. Here, we studied the utility of conjugative relaxase TrwC, a bacterial protein with site-specific integrase activity in bacteria, as an integrase in human cells. Although it is not efficient as a site-specific integrase, we found that TrwC is active in human cells and promotes random integration of the transferred DNA in the human genome, probably acting as a DNA chaperone until it is integrated by host mechanisms. TrwC-DNA complexes can be delivered to human cells through a type IV secretion system involved in pathogenesis. Thus, TrwC could be used in vivo to transfer the DNA of interest into the appropriate cell and promote its integration. If used in combination with a site-specific nuclease, it could lead to site-specific integration of the incoming DNA by homologous recombination.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bartonella henselae/enzimología , Genoma Humano , Integrasas/metabolismo , Angiomatosis Bacilar/genética , Angiomatosis Bacilar/microbiología , Proteínas Bacterianas/genética , Bartonella henselae/genética , Línea Celular , Conjugación Genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Humanos , Integrasas/genética , Plásmidos/genética , Plásmidos/metabolismo
20.
Proc Natl Acad Sci U S A ; 111(12): 4548-53, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24616511

RESUMEN

Systematic genetic perturbation screening in human cells remains technically challenging. Typically, large libraries of chemically synthesized siRNA oligonucleotides are used, each designed to degrade a specific cellular mRNA via the RNA interference (RNAi) mechanism. Here, we report on data from three genome-wide siRNA screens, conducted to uncover host factors required for infection of human cells by two bacterial and one viral pathogen. We find that the majority of phenotypic effects of siRNAs are unrelated to the intended "on-target" mechanism, defined by full complementarity of the 21-nt siRNA sequence to a target mRNA. Instead, phenotypes are largely dictated by "off-target" effects resulting from partial complementarity of siRNAs to multiple mRNAs via the "seed" region (i.e., nucleotides 2-8), reminiscent of the way specificity is determined for endogenous microRNAs. Quantitative analysis enabled the prediction of seeds that strongly and specifically block infection, independent of the intended on-target effect. This prediction was confirmed experimentally by designing oligos that do not have any on-target sequence match at all, yet can strongly reproduce the predicted phenotypes. Our results suggest that published RNAi screens have primarily, and unintentionally, screened the sequence space of microRNA seeds instead of the intended on-target space of protein-coding genes. This helps to explain why previously published RNAi screens have exhibited relatively little overlap. Our analysis suggests a possible way of identifying "seed reagents" for controlling phenotypes of interest and establishes a general strategy for extracting valuable untapped information from past and future RNAi screens.


Asunto(s)
Brucella abortus/efectos de los fármacos , Bunyaviridae/efectos de los fármacos , MicroARNs/genética , Oligonucleótidos/farmacología , Interferencia de ARN , Salmonella typhimurium/efectos de los fármacos , Secuencia de Bases , Brucella abortus/genética , Bunyaviridae/genética , Genes Bacterianos , Células HeLa , Humanos , ARN Interferente Pequeño/genética , Salmonella typhimurium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA