Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 624(7990): 207-214, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37879362

RESUMEN

Four endemic seasonal human coronaviruses causing common colds circulate worldwide: HKU1, 229E, NL63 and OC43 (ref. 1). After binding to cellular receptors, coronavirus spike proteins are primed for fusion by transmembrane serine protease 2 (TMPRSS2) or endosomal cathepsins2-9. NL63 uses angiotensin-converting enzyme 2 as a receptor10, whereas 229E uses human aminopeptidase-N11. HKU1 and OC43 spikes bind cells through 9-O-acetylated sialic acid, but their protein receptors remain unknown12. Here we show that TMPRSS2 is a functional receptor for HKU1. TMPRSS2 triggers HKU1 spike-mediated cell-cell fusion and pseudovirus infection. Catalytically inactive TMPRSS2 mutants do not cleave HKU1 spike but allow pseudovirus infection. Furthermore, TMPRSS2 binds with high affinity to the HKU1 receptor binding domain (Kd 334 and 137 nM for HKU1A and HKU1B genotypes) but not to SARS-CoV-2. Conserved amino acids in the HKU1 receptor binding domain are essential for binding to TMPRSS2 and pseudovirus infection. Newly designed anti-TMPRSS2 nanobodies potently inhibit HKU1 spike attachment to TMPRSS2, fusion and pseudovirus infection. The nanobodies also reduce infection of primary human bronchial cells by an authentic HKU1 virus. Our findings illustrate the various evolution strategies of coronaviruses, which use TMPRSS2 to either directly bind to target cells or prime their spike for membrane fusion and entry.


Asunto(s)
Betacoronavirus , Receptores Virales , Serina Endopeptidasas , Glicoproteína de la Espiga del Coronavirus , Humanos , Betacoronavirus/metabolismo , Bronquios/citología , Bronquios/virología , Resfriado Común/tratamiento farmacológico , Resfriado Común/virología , Fusión de Membrana , Receptores Virales/metabolismo , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/uso terapéutico , Especificidad de la Especie , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
2.
J Virol ; 96(11): e0010922, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35575554

RESUMEN

Anelloviruses (AVs) are commensal members of the human blood virome. Even though it was estimated that over 90% of the human population carries AVs, the dynamics of the AV virome ("anellome") are unknown. We investigated the dynamics of blood anellomes in two healthy people followed up for more than 30 years. Both subjects were positive for AVs in the majority of samples. Alphatorquevirus (torque teno virus [TTV]) was the most common genus in both subjects, followed by Betatorquevirus (torque teno minivirus [TTMV]) and Gammatorquevirus (torque teno midivirus [TTMDV]). Almost five times more lineages were found in subject 1 than in subject 2, and the anellomes differed phylogenetically. Both anellomes remained compositionally stable, and 9 out of 64 AV lineages were detected in over half of the time points. We confirmed the long-term and short-term persistence of 13 lineages by specific quantitative PCR (qPCR). AV lineages were detected in blood for over 30 years. Noticeable differences in anellome richness were found between the tested subjects, but both anellomes remained compositionally stable over time. These findings demonstrate that the human blood anellome is personal and that AV infection is chronic and potentially commensal. IMPORTANCE Knowledge of the persistence of AVs in humans is crucial to our understanding of the nature of AV infection (chronic or acute) and the role of AV in the host. We therefore investigated the dynamics of anellovirus infection in two healthy people followed up for 30 years. Our findings suggest that the human blood anellovirus virome (anellome) remains stable and personal for decades.


Asunto(s)
Anelloviridae , Sangre , Infecciones por Virus ADN , Torque teno virus , Anelloviridae/clasificación , Anelloviridae/genética , Sangre/virología , ADN Viral , Humanos , Filogenia , Torque teno virus/genética , Viroma
3.
J Pediatr ; 258: 113360, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36828342

RESUMEN

OBJECTIVES: To assess whether viral, bacterial, metabolic, and autoimmune diseases are missed by conventional diagnostics among children with severe acute encephalopathy in sub-Saharan Africa. STUDY DESIGN: One hundred thirty-four children (6 months to 18 years) presenting with nontraumatic coma or convulsive status epilepticus to 1 of 4 medical referral centers in Uganda, Malawi, and Rwanda were enrolled between 2015 and 2016. Locally available diagnostic tests could be supplemented in 117 patients by viral, bacterial, and 16s quantitative polymerase chain reaction testing, metagenomics, untargeted metabolomics, and autoimmune immunohistochemistry screening. RESULTS: Fourteen (12%) cases of viral encephalopathies, 8 (7%) cases of bacterial central nervous system (CNS) infections, and 4 (4%) cases of inherited metabolic disorders (IMDs) were newly identified by additional diagnostic testing as the most likely cause of encephalopathy. No confirmed cases of autoimmune encephalitis were found. Patients for whom additional diagnostic testing aided causal evaluation (aOR 3.59, 90% CI 1.57-8.36), patients with a viral CNS infection (aOR 7.91, 90% CI 2.49-30.07), and patients with an IMD (aOR 9.10, 90% CI 1.37-110.45) were at increased risk for poor outcome of disease. CONCLUSIONS: Viral and bacterial CNS infections and IMDs are prevalent causes of severe acute encephalopathy in children in Uganda, Malawi, and Rwanda that are missed by conventional diagnostics and are associated with poor outcome of disease. Improved diagnostic capacity may increase diagnostic yield and might improve outcome of disease.


Asunto(s)
Encefalopatías , Encefalitis , Enfermedades Metabólicas , Niño , Humanos , Encefalopatías/diagnóstico , Encefalopatías/complicaciones , Encefalitis/complicaciones , Encefalitis/diagnóstico , Encefalitis/epidemiología , Estudios de Cohortes , Malaui
4.
Clin Infect Dis ; 68(1): 139-142, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29893821

RESUMEN

A Ugandan child with an unexplained encephalitis was investigated using viral metagenomics. Several sequences from all segments of a novel orthobunyavirus were found. The S-segment, used for typing, showed 41% amino acid diversity to its closest relative. The virus was named Ntwetwe virus, after the hometown of the patient.


Asunto(s)
Infecciones por Bunyaviridae/diagnóstico , Infecciones por Bunyaviridae/virología , Líquido Cefalorraquídeo/virología , Encefalitis Viral/diagnóstico , Encefalitis Viral/virología , Orthobunyavirus/clasificación , Orthobunyavirus/aislamiento & purificación , Preescolar , Femenino , Genotipo , Humanos , Metagenómica , Orthobunyavirus/genética , Uganda
5.
PLoS Pathog ; 11(8): e1005074, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26252390

RESUMEN

From 1992 onwards, outbreaks of a previously unknown illness have been reported in Asian seabass (Lates calcarifer) kept in maricultures in Southeast Asia. The most striking symptom of this emerging disease is the loss of scales. It was referred to as scale drop syndrome, but the etiology remained enigmatic. By using a next-generation virus discovery technique, VIDISCA-454, sequences of an unknown virus were detected in serum of diseased fish. The near complete genome sequence of the virus was determined, which shows a unique genome organization, and low levels of identity to known members of the Iridoviridae. Based on homology of a series of putatively encoded proteins, the virus is a novel member of the Megalocytivirus genus of the Iridoviridae family. The virus was isolated and propagated in cell culture, where it caused a cytopathogenic effect in infected Asian seabass kidney and brain cells. Electron microscopy revealed icosahedral virions of about 140 nm, characteristic for the Iridoviridae. In vitro cultured virus induced scale drop syndrome in Asian seabass in vivo and the virus could be reisolated from these infected fish. These findings show that the virus is the causative agent for the scale drop syndrome, as each of Koch's postulates is fulfilled. We have named the virus Scale Drop Disease Virus. Vaccines prepared from BEI- and formalin inactivated virus, as well as from E. coli produced major capsid protein provide efficacious protection against scale drop disease.


Asunto(s)
Enfermedades de los Peces/virología , Iridoviridae , Animales , Lubina , Enfermedades de los Peces/patología , Filogenia , Reacción en Cadena de la Polimerasa
6.
J Gen Virol ; 96(11): 3440-3443, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26354795

RESUMEN

Recently, four new viruses belonging to an unassigned family within the order Picornavirales were identified in excrements of healthy carp (fisavirus) and pigs (posavirus 1, 2 and 3). We report the detection and characterization of a fifth virus present in human faeces. The virus, named human stool-associated RNA virus (husavirus), contains a single ORF encoding a putative 2993 AA polyprotein, with a Hel-Pro-Pol replication block, typical for the Picornavirales. Phylogenetic analysis revealed that the closest relative to husavirus is posavirus 1, and together they cluster with fisavirus, posavirus 2 and 3 and a roundworm (Ascaris suum) derived virus. Husavirus was detected in eight human stool samples collected in 1984 (n52), 1985 (n54), 1995 (n51) and 2014 (n51). From three strains of husavirus from 1984 and 1985 the full genome sequence was determined, showing less than 5% intraspecies variation in the nucleotide composition. The host of this virus remains to be determined.


Asunto(s)
Heces/virología , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Secuencia de Bases , Genoma Viral , Humanos , Datos de Secuencia Molecular , Filogenia , Virus ARN/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
7.
J Virol ; 87(11): 6081-90, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23427150

RESUMEN

The human airway epithelium (HAE) represents the entry port of many human respiratory viruses, including human coronaviruses (HCoVs). Nowadays, four HCoVs, HCoV-229E, HCoV-OC43, HCoV-HKU1, and HCoV-NL63, are known to be circulating worldwide, causing upper and lower respiratory tract infections in nonhospitalized and hospitalized children. Studies of the fundamental aspects of these HCoV infections at the primary entry port, such as cell tropism, are seriously hampered by the lack of a universal culture system or suitable animal models. To expand the knowledge on fundamental virus-host interactions for all four HCoVs at the site of primary infection, we used pseudostratified HAE cell cultures to isolate and characterize representative clinical HCoV strains directly from nasopharyngeal material. Ten contemporary isolates were obtained, representing HCoV-229E (n = 1), HCoV-NL63 (n = 1), HCoV-HKU1 (n = 4), and HCoV-OC43 (n = 4). For each strain, we analyzed the replication kinetics and progeny virus release on HAE cell cultures derived from different donors. Surprisingly, by visualizing HCoV infection by confocal microscopy, we observed that HCoV-229E employs a target cell tropism for nonciliated cells, whereas HCoV-OC43, HCoV-HKU1, and HCoV-NL63 all infect ciliated cells. Collectively, the data demonstrate that HAE cell cultures, which morphologically and functionally resemble human airways in vivo, represent a robust universal culture system for isolating and comparing all contemporary HCoV strains.


Asunto(s)
Infecciones por Coronavirus/virología , Coronavirus/aislamiento & purificación , Coronavirus/fisiología , Células Epiteliales/virología , Infecciones del Sistema Respiratorio/virología , Tropismo Viral , Adulto , Células Cultivadas , Coronavirus/clasificación , Coronavirus/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sistema Respiratorio/citología , Sistema Respiratorio/virología , Replicación Viral , Adulto Joven
8.
Virol J ; 11: 146, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25112200

RESUMEN

BACKGROUND: The use of sequence independent methods combined with next generation sequencing for identification purposes in clinical samples appears promising and exciting results have been achieved to understand unexplained infections. One sequence independent method, Virus Discovery based on cDNA Amplified Fragment Length Polymorphism (VIDISCA) is capable of identifying viruses that would have remained unidentified in standard diagnostics or cell cultures. METHODS: VIDISCA is normally combined with next generation sequencing, however, we set up a simplified VIDISCA which can be used in case next generation sequencing is not possible. Stool samples of 10 patients with unexplained acute flaccid paralysis showing cytopathic effect in rhabdomyosarcoma cells and/or mouse cells were used to test the efficiency of this method. To further characterize the viruses, VIDISCA-positive samples were amplified and sequenced with gene specific primers. RESULTS: Simplified VIDISCA detected seven viruses (70%) and the proportion of eukaryotic viral sequences from each sample ranged from 8.3 to 45.8%. Human enterovirus EV-B97, EV-B100, echovirus-9 and echovirus-21, human parechovirus type-3, human astrovirus probably a type-3/5 recombinant, and tetnovirus-1 were identified. Phylogenetic analysis based on the VP1 region demonstrated that the human enteroviruses are more divergent isolates circulating in the community. CONCLUSION: Our data support that a simplified VIDISCA protocol can efficiently identify unrecognized viruses grown in cell culture with low cost, limited time without need of advanced technical expertise. Also complex data interpretation is avoided thus the method can be used as a powerful diagnostic tool in limited resources. Redesigning the routine diagnostics might lead to additional detection of previously undiagnosed viruses in clinical samples of patients.


Asunto(s)
Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Enfermedades Transmisibles Emergentes/virología , Heces/virología , Paraplejía/virología , Virosis/virología , Virus/genética , Virus/aislamiento & purificación , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados/métodos , Proteínas de la Cápside/genética , Niño , Preescolar , Enfermedades Transmisibles Emergentes/diagnóstico , Femenino , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Virosis/diagnóstico , Virus/clasificación
9.
BMC Infect Dis ; 14: 22, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24410947

RESUMEN

BACKGROUND: Gastrointestinal symptoms, in particular diarrhoea, are common in non-treated HIV-1 infected individuals. Although various enteric pathogens have been implicated, the aetiology of diarrhoea remains unexplained in a large proportion of HIV-1 infected patients. Our aim is to identify the cause of diarrhoea for patients that remain negative in routine diagnostics. METHODS: In this study stool samples of 196 HIV-1 infected persons, including 29 persons with diarrhoea, were examined for enteropathogens and HIV-1. A search for unknown and unexpected viruses was performed using virus discovery cDNA-AFLP combined with Roche-454 sequencing (VIDISCA-454). RESULTS: HIV-1 RNA was detected in stool of 19 patients with diarrhoea (66%) compared to 75 patients (45%) without diarrhoea. In 19 of the 29 diarrhoea cases a known enteropathogen could be identified (66%). Next to these known causative agents, a range of recently identified viruses was identified via VIDISCA-454: cosavirus, Aichi virus, human gyrovirus, and non-A non-B hepatitis virus. Moreover, a novel virus was detected which was named immunodeficiency-associated stool virus (IASvirus). However, PCR based screening for these viruses showed that none of these novel viruses was associated with diarrhoea. Notably, among the 34% enteropathogen-negative cases, HIV-1 RNA shedding in stool was more frequently observed (80%) compared to enteropathogen-positive cases (47%), indicating that HIV-1 itself is the most likely candidate to be involved in diarrhoea. CONCLUSION: Unexplained diarrhoea in HIV-1 infected patients is probably not caused by recently described or previously unknown pathogens, but it is more likely that HIV-1 itself plays a role in intestinal mucosal abnormalities which leads to diarrhoea.


Asunto(s)
Diarrea/virología , Infecciones por VIH/complicaciones , VIH-1 , Virus/aislamiento & purificación , Adulto , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Heces/virología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Picornaviridae
10.
Microbiol Spectr ; 12(3): e0391223, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38329364

RESUMEN

After 3 years of its introduction to humans, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared as endemic. Little is known about the severity of the disease manifestation that future infections may cause, especially when reinfections occur after humoral immunity from a previous infection or vaccination has waned. Such knowledge could inform policymakers regarding the frequency of vaccination. Reinfections by endemic human coronaviruses (HCoVs) can serve as a model system for SARS-CoV-2 endemicity. We monitored 44 immunocompetent male adults with blood sampling every 6 months (for 17 years), for the frequency of HCoV (re-)infections, using rises in N-antibodies of HCoV-NL63, HCoV-29E, HCoV-OC43, and HCoV-HKU1 as markers of infection. Disease associations during (re-)infections were examined by comparison of self-reporting records of influenza-like illness (ILI) symptoms, every 6 months, by all participants. During 8,549 follow-up months, we found 364 infections by any HCoV with a median of eight infections per person. Symptoms more frequently reported during HCoV infection were cough, sore throat, and myalgia. Two hundred fifty-one of the 364 infections were species-specific HCoV-reinfections, with a median interval of 3.58 (interquartile range 1.92-5.67) years. The length of the interval between reinfections-being either short or long-had no influence on the frequency of reporting ILI symptoms. All HCoV-NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1 (re-)infections are associated with the reporting of ILIs. Importantly, in immunocompetent males, these symptoms are not influenced by the length of the interval between reinfections. IMPORTANCE: Little is known about the disease following human coronavirus (HCoV) reinfection occurring years after the previous infection, once humoral immunity has waned. We monitored endemic HCoV reinfection in immunocompetent male adults for up to 17 years. We found no influence of reinfection interval length in the disease manifestation, suggesting that immunocompetent male adults are adequately protected against future HCoV infections.


Asunto(s)
Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Gripe Humana , Infecciones del Sistema Respiratorio , Adulto , Humanos , Masculino , Reinfección , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Infecciones del Sistema Respiratorio/diagnóstico , SARS-CoV-2
11.
Genes (Basel) ; 15(3)2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38540323

RESUMEN

In 2015 and 2016, two Barramundi (Lates calcarifer) farms in Singapore reported a disease outbreak characterized by lethargic behavior, pronounced inappetence, generalized skin lesions, erosions of the fins and tail, and ultimately high mortality in their fish. Next-generation sequencing and PCR confirmed presence of a novel virus belonging to the Alloherpesviridae family, Lates calcarifer herpesvirus (LCHV), which was subsequently isolated and cultured. We characterize, for the first time, the complete genome of two cultured LCHV isolates. The genome contains a long unique region of approximately 105,000 bp flanked by terminal repeats of approximately 24,800 bp, of which the first 8.2 kb do not show any similarity to described genomes in the Alloherpesviridae family. The two cultured isolates share 89% nucleotide identity, and their closest relatives are the viruses belonging to the genus Ictalurivirus. Experimental infections using one of the cultured LCHV isolates resulted in identical clinical signs as originally described in the index farm, both in intraperitoneal-injection infected fish and cohabitant fish, with mortality in both groups. Histopathological analysis showed pronounced abnormalities in the gills. Virus culture and PCR analysis confirmed the replication of LCHV in the infected fish, and thus Koch's postulates were fulfilled.


Asunto(s)
Perciformes , Animales , Perciformes/genética , Genoma , Peces/genética
12.
Viruses ; 16(1)2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38257799

RESUMEN

Members of the Anelloviridae family dominate the blood virome, emerging early in life. The anellome, representing the variety of anelloviruses within an individual, stabilizes by adulthood. Despite their supposedly commensal nature, elevated anellovirus concentrations under immunosuppressive treatment indicate an equilibrium controlled by immunity. Here, we investigated whether anelloviruses are sensitive to the immune activation that accompanies a secondary infection. As a model, we investigated 19 health care workers (HCWs) with initial SARS-CoV-2 infection, with blood sampling performed pre and post infection every 4 weeks in a 3-month-follow-up during the early 2020 COVID-19 pandemic. A concurrently followed control group (n = 27) remained SARS-CoV-2-negative. Serum anellovirus loads were measured using qPCR. A significant decrease in anellovirus load was found in the first weeks after SARS-CoV-2 infection, whereas anellovirus concentrations remained stable in the uninfected control group. A restored anellovirus load was seen approximately 10 weeks after SARS-CoV-2 infection. For five subjects, an in-time anellome analysis via Illumina sequencing could be performed. In three of the five HCWs, the anellome visibly changed during SARS-CoV-2 infection and returned to baseline in two of these cases. In conclusion, anellovirus loads in blood can temporarily decrease upon an acute secondary infection.


Asunto(s)
Anelloviridae , COVID-19 , Coinfección , Humanos , Adulto , Pandemias , SARS-CoV-2
13.
Virol J ; 10: 323, 2013 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-24171716

RESUMEN

BACKGROUND: Although human torque teno viruses (TTVs) were first discovered in 1997, still many associated aspects are not clarified yet. The viruses reveal a remarkable heterogeneity and it is possible that some genotypes are more pathogenic than others. The identification of all genotypes is essential to confirm previous pathogenicity data, and an unbiased search for novel viruses is needed to identify TTVs that might be related to disease. METHOD: The virus discovery technique VIDISCA-454 was used to screen serum of 55 HIV-1 positive injecting drug users, from the Amsterdam Cohort Studies, in search for novel blood-blood transmittable viruses which are undetectable via normal diagnostics or panvirus-primer PCRs. RESULTS: A novel torque teno mini virus (TTMV) was identified in two patients and the sequence of the full genomes were determined. The virus is significantly different from the known TTMVs (< 40% amino acid identity in ORF1), yet it contains conserved characteristics that are also present in other TTMVs. The virus is chronically present in both patients, and these patients both suffered from a pneumococcal pneumonia during follow up and had extremely low B-cells counts. CONCLUSION: We describe a novel TTMV which we tentatively named TTMV-13. Further research is needed to address the epidemiology and pathogenicity of this novel virus.


Asunto(s)
ADN Viral/química , ADN Viral/genética , Genoma Viral , Infecciones por VIH/complicaciones , Suero/virología , Torque teno virus/clasificación , Torque teno virus/aislamiento & purificación , Análisis por Conglomerados , Estudios de Cohortes , Genotipo , Infecciones por VIH/virología , VIH-1/aislamiento & purificación , Humanos , Masculino , Datos de Secuencia Molecular , Países Bajos , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia , Abuso de Sustancias por Vía Intravenosa , Torque teno virus/genética
14.
Virus Evol ; 9(1): vead001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36726484

RESUMEN

Human anelloviruses (AVs) are extremely genetically diverse, are widespread in the human population, and cause chronic infections. However, the evolutionary dynamics of AVs within single hosts is currently unknown, and it is unclear whether these changes have an implication on the long-term persistence of AVs in the host. Here, we assessed the evolutionary dynamics of six AV lineages during 30 years of chronic infection at single host resolution. The total number of substitutions and the number of variable sites increased over time. However, not all substitutions reached population fixation, showing that AV lineages form heterogeneous swarms within the host. Most substitutions occurred within a hypervariable region (HVR) located between nucleotide positions 800 and 1,300 of ORF1, which is known to be located within the spike domain. Different regions of the ORF1 gene undergo either positive or negative selection pressure. Sites under strong diversifying selection pressure were detected in the HVR, while the majority of the sites under purifying selection were detected outside this region. The HVR may play the role of an immunological decoy that prevents antibodies from binding to more vulnerable parts of ORF1. Moreover, the frequent substitutions in this region may increase the chances of AV particles escaping immune recognition.

15.
Viruses ; 15(6)2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37376670

RESUMEN

Metagenomics has demonstrated its capability in outbreak investigations and pathogen surveillance and discovery. With high-throughput and effective bioinformatics, many disease-causing agents, as well as novel viruses of humans and animals, have been identified using metagenomic analysis. In this study, a VIDISCA metagenomics workflow was used to identify potential unknown viruses in 33 fecal samples from asymptomatic long-tailed macaques (Macaca fascicularis) in Ratchaburi Province, Thailand. Putatively novel astroviruses, enteroviruses, and adenoviruses were detected and confirmed by PCR analysis of long-tailed macaque fecal samples collected from areas in four provinces, Ratchaburi, Kanchanaburi, Lopburi, and Prachuap Khiri Khan, where humans and monkeys live in proximity (total n = 187). Astroviruses, enteroviruses, and adenoviruses were present in 3.2%, 7.5%, and 4.8% of macaque fecal samples, respectively. One adenovirus, named AdV-RBR-6-3, was successfully isolated in human cell culture. Whole-genome analysis suggested that it is a new member of the species Human adenovirus G, closely related to Rhesus adenovirus 53, with evidence of genetic recombination and variation in the hexon, fiber, and CR1 genes. Sero-surveillance showed neutralizing antibodies against AdV-RBR-6-3 in 2.9% and 11.2% of monkeys and humans, respectively, suggesting cross-species infection of monkeys and humans. Overall, we reported the use of metagenomics to screen for possible new viruses, as well as the isolation and molecular and serological characterization of the new adenovirus with cross-species transmission potential. The findings emphasize that zoonotic surveillance is important and should be continued, especially in areas where humans and animals interact, to predict and prevent the threat of emerging zoonotic pathogens.


Asunto(s)
Infecciones por Adenoviridae , Adenovirus de los Simios , Infecciones por Enterovirus , Enterovirus , Animales , Humanos , Macaca fascicularis , Adenovirus de los Simios/genética , Tailandia/epidemiología , Macaca mulatta , Adenoviridae , Infecciones por Adenoviridae/veterinaria , Heces , Filogenia
16.
Viruses ; 15(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37766380

RESUMEN

After publication of the article, the authors received comments from a member of the Viruses editorial board who is an expert in the field of adenovirus concerning figures and references that should be included in the paper [...].

17.
Brain Commun ; 5(5): fcad223, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731906

RESUMEN

Nodding syndrome is a neglected, disabling and potentially fatal epileptic disorder of unknown aetiology affecting thousands of individuals mostly confined to Eastern sub-Saharan Africa. Previous studies have identified multiple associations-including Onchocerca volvulus, antileiomodin-1 antibodies, vitamin B6 deficiency and measles virus infection-yet, none is proven causal. We conducted a case-control study of children with early-stage nodding syndrome (symptom onset <1 year). Cases and controls were identified through a household survey in the Greater Mundri area in South Sudan. A wide range of parasitic, bacterial, viral, immune-mediated, metabolic and nutritional risk factors was investigated using conventional and state-of-the-art untargeted assays. Associations were examined by multiple logistic regression analysis, and a hypothetical causal model was constructed using structural equation modelling. Of 607 children with nodding syndrome, 72 with early-stage disease were included as cases and matched to 65 household- and 44 community controls. Mansonella perstans infection (odds ratio 7.04, 95% confidence interval 2.28-21.7), Necator americanus infection (odds ratio 2.33, 95% confidence interval 1.02-5.3), higher antimalarial seroreactivity (odds ratio 1.75, 95% confidence interval 1.20-2.57), higher vitamin E concentration (odds ratio 1.53 per standard deviation increase, 95% confidence interval 1.07-2.19) and lower vitamin B12 concentration (odds ratio 0.56 per standard deviation increase, 95% confidence interval 0.36-0.87) were associated with higher odds of nodding syndrome. In a structural equation model, we hypothesized that Mansonella perstans infection, higher vitamin E concentration and fewer viral exposures increased the risk of nodding syndrome while lower vitamin B12 concentration, Necator americanus and malaria infections resulted from having nodding syndrome. We found no evidence that Onchocerca volvulus, antileiomodin-1 antibodies, vitamin B6 and other factors were associated with nodding syndrome. Our results argue against several previous causal hypotheses including Onchocerca volvulus. Instead, nodding syndrome may be caused by a complex interplay between multiple pathogens and nutrient levels. Further studies need to confirm these associations and determine the direction of effect.

18.
J Gen Virol ; 93(Pt 9): 1924-1929, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22718567

RESUMEN

Like severe acute respiratory syndrome coronavirus (SARS-CoV), human coronavirus (HCoV)-NL63 employs angiotensin-converting enzyme 2 (ACE2) as a receptor for cellular entry. SARS-CoV infection causes robust downregulation of cellular ACE2 expression levels and it has been suggested that the SARS-CoV effect on ACE2 is involved in the severity of disease. We investigated whether cellular ACE2 downregulation occurs at optimal replication conditions of HCoV-NL63 infection. The expression of the homologue of ACE2, the ACE protein not used as a receptor by HCoV-NL63, was measured as a control. A specific decrease for ACE2 protein level was observed when HCoV-NL63 was cultured at 34 °C. Culturing the virus at the suboptimal temperature of 37 °C resulted in low replication of the virus and the effect on ACE2 expression was lost. We conclude that the decline of ACE2 expression is dependent on the efficiency of HCoV-NL63 replication, and that HCoV-NL63 and SARS-CoV both affect cellular ACE2 expression during infection.


Asunto(s)
Infecciones por Coronavirus/enzimología , Infecciones por Coronavirus/virología , Coronavirus Humano NL63/fisiología , Regulación hacia Abajo , Peptidil-Dipeptidasa A/genética , Replicación Viral , Enzima Convertidora de Angiotensina 2 , Línea Celular , Coronavirus Humano NL63/genética , Humanos , Peptidil-Dipeptidasa A/metabolismo
19.
Virus Genes ; 45(3): 433-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22926811

RESUMEN

Human coronavirus 229E has been identified in the mid-1960s, yet still only one full-genome sequence is available. This full-length sequence has been determined from the cDNA-clone Inf-1 that is based on the lab-adapted strain VR-740. Lab-adaptation might have resulted in genomic changes, due to insufficient pressure to maintain gene integrity of non-essential genes. We present here the first full-length genome sequence of two clinical isolates. Each encoded gene was compared to Inf-1. In general, little sequence changes were noted, most could be attributed to genetic drift, since the clinical isolates originate from 2009 to 2010 and VR740 from 1962. Hot spots of substitutions were situated in the S1 region of the Spike, the nucleocapsid gene, and the non-structural protein 3 gene, whereas several deletions were detected in the 3'UTR. Most notable was the difference in genome organization: instead of an ORF4A and ORF4B, an intact ORF4 was present in clinical isolates.


Asunto(s)
Coronavirus Humano 229E/genética , Evolución Molecular , Genoma Viral , Glicoproteínas de Membrana/genética , Proteínas del Envoltorio Viral/genética , Regiones no Traducidas 3' , Secuencia de Aminoácidos , Secuencia de Bases , Células Cultivadas , Coronavirus Humano 229E/clasificación , Coronavirus Humano 229E/aislamiento & purificación , Infecciones por Coronavirus/virología , Proteínas de la Nucleocápside de Coronavirus , Flujo Genético , Humanos , Proteínas de la Nucleocápside/genética , Sistemas de Lectura Abierta , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus
20.
Microbiol Spectr ; 10(5): e0161022, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-35993766

RESUMEN

Fungi host viruses from many families, and next-generation sequencing can be used to discover previously unknown genomes. Some fungus-infecting viruses (mycoviruses) confer hypovirulence on their pathogenic hosts, raising the possibility of therapeutic application in the treatment of fungal diseases. Though all fungi probably host mycoviruses, many human pathogens have none documented, implying the mycoviral catalogue remains at an early stage. Here, we carried out virus discovery on 61 cultures of pathogenic fungi covering 27 genera and at least 56 species. Using next-generation sequencing of total nucleic acids, we found no DNA viruses but did find a surprising RNA virus diversity of 11 genomes from six classified families and two unclassified lineages, including eight genomes likely representing new species. Among these was the first jivivirus detected in a fungal host (Aspergillus lentulus). We separately utilized rolling circle amplification and next-generation sequencing to identify ssDNA viruses specifically. We identified 13 new cressdnaviruses across all libraries, but unlike the RNA viruses, they could not be confirmed by PCR in either the original unamplified samples or freshly amplified nucleic acids. Their distributions among sequencing libraries and inconsistent detection suggest low-level contamination of reagents. This highlights both the importance of validation assays and the risks of viral host prediction on the basis of highly amplified sequencing libraries. Meanwhile, the detected RNA viruses provide a basis for experimentation to characterize possible hypovirulent effects, and hint at a wealth of uncharted viral diversity currently frozen in biobanks. IMPORTANCE Fungal pathogens of humans are a growing global health burden. Viruses of fungi may represent future therapeutic tools, but for many fungal pathogens there are no known viruses. Our study examined the viral content of diverse human-pathogenic fungi in a clinical biobank, identifying numerous viral genomes, including one lineage previously not known to infect fungi.


Asunto(s)
Virus Fúngicos , Ácidos Nucleicos , Virus ARN , Humanos , Virus Fúngicos/genética , Hongos/genética , Genoma Viral , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA