Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EMBO Rep ; 21(1): e47882, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31825165

RESUMEN

During the chronic stage of Schistosoma infection, the female lays fertile eggs, triggering a strong anti-parasitic type 2 helper T-cell (Th2) immune response. It is unclear how this Th2 response gradually declines even though the worms live for years and continue to produce eggs. Here, we show that Schistosoma mansoni downregulates Th2 differentiation in an antigen-presenting cell-independent manner, by modulating the Th2-specific transcriptional program. Adult schistosomes secrete miRNA-harboring extracellular vesicles that are internalized by Th cells in vitro. Schistosomal miRNAs are found also in T helper cells isolated from Peyer's patches and mesenteric lymph nodes of infected mice. In T helper cells, the schistosomal miR-10 targets MAP3K7 and consequently downmodulates NF-κB activity, a critical transcription factor for Th2 differentiation and function. Our results explain, at least partially, how schistosomes tune down the Th2 response, and provide further insight into the reciprocal geographic distribution between high prevalence of parasitic infections and immune disorders such as allergy. Furthermore, this worm-host crosstalk mechanism can be harnessed to develop diagnostic and therapeutic approaches for human schistosomiasis and Th2-associated diseases.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Animales , Diferenciación Celular , Femenino , Ratones , MicroARNs/genética , Schistosoma mansoni/genética , Células Th2
2.
Proteins ; 88(1): 187-195, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31325330

RESUMEN

Many human pathogens use host cell-surface receptors to attach and invade cells. Often, the host-pathogen interaction affinity is low, presenting opportunities to block invasion using a soluble, high-affinity mimic of the host protein. The Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) provides an exciting candidate for mimicry: it is highly conserved and its moderate affinity binding to the human receptor basigin (KD ≥1 µM) is an essential step in erythrocyte invasion by this malaria parasite. We used deep mutational scanning of a soluble fragment of human basigin to systematically characterize point mutations that enhance basigin affinity for RH5 and then used Rosetta to design a variant within the sequence space of affinity-enhancing mutations. The resulting seven-mutation design exhibited 1900-fold higher affinity (KD approximately 1 nM) for RH5 with a very slow binding off rate (0.23 h-1 ) and reduced the effective Plasmodium growth-inhibitory concentration by at least 10-fold compared to human basigin. The design provides a favorable starting point for engineering on-rate improvements that are likely to be essential to reach therapeutically effective growth inhibition.


Asunto(s)
Basigina/farmacología , Proteínas Portadoras/genética , Malaria Falciparum/tratamiento farmacológico , Eritrocitos/efectos de los fármacos , Humanos , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Modelos Moleculares , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/patogenicidad , Unión Proteica/efectos de los fármacos , Proteínas Protozoarias/genética
3.
Methods ; 112: 157-166, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27350362

RESUMEN

Malaria is the most devastating parasitic disease of humans, caused by the unicellular protozoa of the Plasmodium genus, such as Plasmodium falciparum (Pf) and is responsible for up to a million deaths each year. Pf life cycle is complex, with transmission of the parasite between humans via mosquitos involving a remarkable series of morphological transformations. In the bloodstream, the parasites undergo asexual multiplications inside the red blood cell (RBC), where they mature through the ring (R), trophozoite (T) and schizont (S) stages, and sexual development, resulting in gametocytes (G). All symptoms of malaria pathology are caused by the asexual blood stage parasites. Flow cytometry methods were previously used to detect malaria infected (i) RBCs, in live or fixed cells, using DNA (Hoechst) and RNA (Thiazole Orange) stains. Here, by using imaging flow cytometry, we developed improved methods of identifying and quantifying each of the four parasite blood stages (R, T, S and G). This technique allows multi-channel, high resolution imaging of individual parasites, as well as detailed morphological quantification of Pf-iRBCs cultures. Moreover, by measuring iRBC morphological properties, we can eliminate corrupted and extracellular (dying) parasites from the analysis, providing accurate quantification and robust measurement of the parasitemia profile. This new method is a valuable tool in malaria molecular biology research and drug screen assays.


Asunto(s)
Eritrocitos/parasitología , Citometría de Flujo/métodos , Citometría de Imagen/métodos , Estadios del Ciclo de Vida/fisiología , Plasmodium falciparum/crecimiento & desarrollo , Coloración y Etiquetado/métodos , Colorantes Azulados/química , Bencimidazoles/química , Benzotiazoles/química , Células Cultivadas , Eritrocitos/ultraestructura , Colorantes Fluorescentes/química , Humanos , Plasmodium falciparum/ultraestructura , Quinolinas/química
4.
J Cell Sci ; 125(Pt 22): 5578-86, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22899716

RESUMEN

Uncontrolled accumulation of reactive oxygen species (ROS) causes oxidative stress and induces harmful effects. Both high ROS levels and p53 mutations are frequent in human cancer. Mutant p53 forms are known to actively promote malignant growth. However, no mechanistic details are known about the contribution of mutant p53 to excessive ROS accumulation in cancer cells. Herein, we examine the effect of p53(R273H), a commonly occurring mutated p53 form, on the expression of phase 2 ROS-detoxifying enzymes and on the ability of cells to readopt a reducing environment after exposure to oxidative stress. Our data suggest that p53(R273H) mutant interferes with the normal response of human cells to oxidative stress. We show here that, upon oxidative stress, mutant p53(R273H) attenuates the activation and function of NF-E2-related factor 2 (NRF2), a transcription factor that induces the antioxidant response. This effect of mutant p53 is manifested by decreased expression of phase 2 detoxifying enzymes NQO1 and HO-1 and high ROS levels. These findings were observed in several human cancer cell lines, highlighting the general nature of this phenomenon. The failure of p53(R273H) mutant-expressing cells to restore a reducing oxidative environment was accompanied by increased survival, a known consequence of mutant p53 expression. These activities are attributable to mutant p53(R273H) gain of function and might underlie its well-documented oncogenic nature in human cancer.


Asunto(s)
Sustitución de Aminoácidos/genética , Neoplasias del Colon/enzimología , Neoplasias del Colon/patología , Fase II de la Desintoxicación Metabólica/genética , Proteínas Mutantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Técnicas de Silenciamiento del Gen , Células HCT116 , Hemo-Oxigenasa 1/metabolismo , Humanos , Maleatos/farmacología , Mutación/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , ARN Interferente Pequeño/metabolismo , Superóxidos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
5.
Nat Commun ; 12(1): 1172, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608523

RESUMEN

Mature red blood cells (RBCs) lack internal organelles and canonical defense mechanisms, making them both a fascinating host cell, in general, and an intriguing choice for the deadly malaria parasite Plasmodium falciparum (Pf), in particular. Pf, while growing inside its natural host, the human RBC, secretes multipurpose extracellular vesicles (EVs), yet their influence on this essential host cell remains unknown. Here we demonstrate that Pf parasites, cultured in fresh human donor blood, secrete within such EVs assembled and functional 20S proteasome complexes (EV-20S). The EV-20S proteasomes modulate the mechanical properties of naïve human RBCs by remodeling their cytoskeletal network. Furthermore, we identify four degradation targets of the secreted 20S proteasome, the phosphorylated cytoskeletal proteins ß-adducin, ankyrin-1, dematin and Epb4.1. Overall, our findings reveal a previously unknown 20S proteasome secretion mechanism employed by the human malaria parasite, which primes RBCs for parasite invasion by altering membrane stiffness, to facilitate malaria parasite growth.


Asunto(s)
Transporte Biológico/fisiología , Eritrocitos/metabolismo , Interacciones Huésped-Parásitos/fisiología , Malaria Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Citoesqueleto/metabolismo , Eritrocitos/citología , Eritrocitos/parasitología , Humanos , Malaria Falciparum/parasitología , Proteínas de la Membrana/metabolismo , Fosforilación , Plasmodium falciparum/crecimiento & desarrollo , Proteómica
6.
Biomedicines ; 8(5)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349226

RESUMEN

Extracellular vesicles (EVs) are cell-derived membrane-bound structures that are believed to play a major role in intercellular communication by allowing cells to exchange proteins and genetic cargo between them. In particular, pathogens, such as the malaria parasite Plasmodium (P.) falciparum, utilize EVs to promote their growth and to alter their host's response. Thus, better characterization of these secreted organelles will enhance our understanding of the cellular processes that govern EVs' biology and pathological functions. Here we present a method that utilizes a high-end flow cytometer system to characterize small EVs, i.e., with a diameter less than 200 nm. Using this method, we could evaluate different parasite-derived EV populations according to their distinct cargo by using antibody-free labeling. It further allows to closely monitor a sub-population of vesicles carrying parasitic DNA cargo. This ability paves the way to conducting a more 'educated' analysis of the various EV cargo components.

7.
Mol Biol Cell ; 29(16): 2005-2011, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29927358

RESUMEN

A large number of studies demonstrate that cell mechanics and pathology are intimately linked. In particular, deformability of red blood cells (RBCs) is key to their function and is dramatically altered in the time course of diseases such as anemia and malaria. Due to the physiological importance of cell mechanics, many methods for cell mechanical probing have been developed. While single-cell methods provide very valuable information, they are often technically challenging and lack the high data throughput needed to distinguish differences in heterogeneous populations, while fluid-flow high-throughput methods miss the accuracy to detect subtle differences. Here we present a new method for multiplexed single-cell mechanical probing using acoustic force spectroscopy (AFS). We demonstrate that mechanical differences induced by chemical treatments of known effect can be measured and quantified. Furthermore, we explore the effect of extracellular vesicles (EVs) uptake on RBC mechanics and demonstrate that EVs uptake increases RBC deformability. Our findings demonstrate the ability of AFS to manipulate cells with high stability and precision and pave the way to further new insights into cellular mechanics and mechanobiology in health and disease, as well as potential biomedical applications.


Asunto(s)
Acústica , Eritrocitos/fisiología , Análisis Espectral/métodos , Fenómenos Biomecánicos , Humanos
8.
PLoS One ; 8(4): e61353, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23630584

RESUMEN

Mutations in the p53 tumor suppressor protein are highly frequent in tumors and often endow cells with tumorigenic capacities. We sought to examine a possible role for mutant p53 in the cross-talk between cancer cells and their surrounding stroma, which is a crucial factor affecting tumor outcome. Here we present a novel model which enables individual monitoring of the response of cancer cells and stromal cells (fibroblasts) to co-culturing. We found that fibroblasts elicit the interferon beta (IFNß) pathway when in contact with cancer cells, thereby inhibiting their migration. Mutant p53 in the tumor was able to alleviate this response via SOCS1 mediated inhibition of STAT1 phosphorylation. IFNß on the other hand, reduced mutant p53 RNA levels by restricting its RNA stabilizer, WIG1. These data underscore mutant p53 oncogenic properties in the context of the tumor microenvironment and suggest that mutant p53 positive cancer patients might benefit from IFNß treatment.


Asunto(s)
Fibroblastos/metabolismo , Interferón beta/metabolismo , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Movimiento Celular , Técnicas de Cocultivo , Humanos , Neoplasias Pulmonares , Mutación , Proteínas Nucleares/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Estabilidad del ARN , Proteínas de Unión al ARN , Factor de Transcripción STAT1/metabolismo , Proteína 1 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Escape del Tumor , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA