Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Adv ; 10(21): eadj1539, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781331

RESUMEN

Microbial associations and interactions drive and regulate nutrient fluxes in the ocean. However, physical contact between cells of marine cyanobacteria has not been studied thus far. Here, we show a mechanism of direct interaction between the marine cyanobacteria Prochlorococcus and Synechococcus, the intercellular membrane nanotubes. We present evidence of inter- and intra-genus exchange of cytoplasmic material between neighboring and distant cells of cyanobacteria mediated by nanotubes. We visualized and measured these structures in xenic and axenic cultures and in natural samples. We show that nanotubes are produced between living cells, suggesting that this is a relevant system of exchange material in vivo. The discovery of nanotubes acting as exchange bridges in the most abundant photosynthetic organisms in the ocean may have important implications for their interactions with other organisms and their population dynamics.


Asunto(s)
Nanotubos , Prochlorococcus , Synechococcus , Synechococcus/metabolismo , Nanotubos/química , Prochlorococcus/metabolismo , Cianobacterias/metabolismo , Organismos Acuáticos , Agua de Mar/microbiología
2.
Biochim Biophys Acta Bioenerg ; 1864(2): 148954, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563737

RESUMEN

The marine cyanobacterium Prochlorococcus is one of the main primary producers on Earth, which can take up glucose by using the high affinity, multiphasic transporter GlcH. We report here the overexpression of glcH from Prochlorococcus marinus strain SS120 in Escherichia coli. Modeling studies of GlcH using the homologous MelB melibiose transporter from Salmonella enterica serovar Typhimurium showed high conservation at the overall fold. We observed that an important structural interaction, mediated by a strong hydrogen bond between D8 and R141, is conserved in Prochlorococcus, although the corresponding amino acids in MelB from Salmonella are different. Biased docking studies suggested that when glucose reaches the pocket of the transporter and interacts with D8 and R141, the hydrogen bond network in which these residues are involved could be disrupted, favoring a conformational change with the subsequent translocation of the glucose molecule towards the cytoplasmic region of the pmGlcH structure. Based on these theoretical predictions and on the conservation of N117 and W348 in other MelB structures, D8, N117, R141 and W348 were mutated to glycine residues. Their key role in glucose transport was evaluated by glucose uptake assays. N117G and W348G mutations led to 17 % decrease in glucose uptake, while D8G and R141G decreased the glucose transport by 66 % and 92 % respectively. Overall, our studies provide insights into the Prochlorococcus 3D-structure of GlcH, paving the way for further analysis to understand the features which are involved in the high affinity and multiphasic kinetics of this transporter.


Asunto(s)
Proteínas Facilitadoras del Transporte de la Glucosa , Prochlorococcus , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Prochlorococcus/genética , Prochlorococcus/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mutagénesis , Escherichia coli/genética , Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA