Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688866

RESUMEN

AIMS: Understanding bacterial phage resistance mechanisms has implications for developing phage-based therapies. This study aimed to explore the development of phage resistance in Escherichia coli K1 isolates' to K1-ULINTec4, a K1-dependent bacteriophage. METHODS AND RESULTS: Resistant colonies were isolated from two different strains (APEC 45 and C5), both previously exposed to K1-ULINTec4. Genome analysis and several parameters were assessed, including growth capacity, phage adsorption, phenotypic impact at capsular level, biofilm production, and virulence in the in vivo Galleria mellonella larvae model. One out of the six resistant isolates exhibited a significantly slower growth rate, suggesting the presence of a resistance mechanism altering its fitness. Comparative genomic analysis revealed insertion sequences in the region 2 of the kps gene cluster involved in the capsule biosynthesis. In addition, an immunoassay targeting the K1 capsule showed a very low positive reaction compared to the control. Nevertheless, microscopic images of resistant strains revealed the presence of capsules with a clustered organization of bacterial cells and biofilm assessment showed an increased biofilm production compared to the sensitive strains. In the G. mellonella model, larvae infected with phage-resistant isolates showed better survival rates than larvae infected with phage-sensitive strains. CONCLUSIONS: A phage resistance mechanism was identified at the genomic level and had a negative impact on the K1 capsule production. The resistant isolates showed an increased biofilm production and a decreased virulence in vivo.


Asunto(s)
Cápsulas Bacterianas , Biopelículas , Escherichia coli , Animales , Cápsulas Bacterianas/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Biopelículas/crecimiento & desarrollo , Colifagos/genética , Colifagos/fisiología , Escherichia coli/virología , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Larva/microbiología , Larva/virología , Virulencia/genética , Humanos , Mariposas Nocturnas/microbiología
2.
Microorganisms ; 12(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38399640

RESUMEN

Gastrointestinal simulations in vitro have only limited approaches to analyze the microbial communities inhabiting the mucosal compartment. Understanding and differentiating gut microbial ecosystems is crucial for a more comprehensive and accurate representation of the gut microbiome and its interactions with the host. Herein is suggested, in a short-term and static set-up (named "M-batches"), the analysis of mucosal and luminal populations of inhabitants of the human colon. After varying several parameters, such as the fermentation volume and the fecal inoculum (single or pool), only minor differences in microbial composition and metabolic production were identified. However, the pool created with feces from five donors and cultivated in a smaller volume (300 mL) seemed to provide a more stable luminal ecosystem. The study of commercially available coffee and green tea in the M-batches suggested some positive effects of these worldwide known beverages, including the increase in butyrate-producing bacteria and lactobacilli populations. We hope that this novel strategy can contribute to future advances in the study of intestinal ecosystems and host-microbe relationships and help elucidate roles of the microbiome in health and disease.

3.
Carbohydr Polym ; 332: 121911, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431414

RESUMEN

Milk oligosaccharides (MOs), complex carbohydrates prevalent in human breast milk, play a vital role in infant nutrition. Serving as prebiotics, they inhibit pathogen adherence, modulate the immune system, and support newborn brain development. Notably, MOs demonstrate significant variations in concentration and composition, both across different species and within the same species. These characteristics of MOs lead to several compelling questions: (i) What distinct beneficial functions do MOs offer and how do the functions vary along with their structural differences? (ii) In what ways do MOs in human milk differ from those in other mammals, and what factors drive these unique profiles? (iii) What are the emerging applications of MOs, particularly in the context of their incorporation into infant formula? This review delves into the structural characteristics, quantification methods, and species-specific concentration differences of MOs. It highlights the critical role of human MOs in infant growth and their potential applications, providing substantial evidence to enhance infant health and development.


Asunto(s)
Leche Humana , Leche , Recién Nacido , Animales , Femenino , Humanos , Leche/química , Leche Humana/química , Oligosacáridos/química , Fórmulas Infantiles/química , Prebióticos/análisis , Mamíferos/metabolismo
4.
Food Res Int ; 182: 114157, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519184

RESUMEN

Intestinal fibrosis is a long-term complication of inflammatory bowel diseases (IBD). Changes in microbial populations have been linked with the onset of fibrosis and some food additives are known to promote intestinal inflammation facilitating fibrosis induction. In this study, we investigated how polysorbate 80, sucralose, titanium dioxide, sodium nitrite and maltodextrin affect the gut microbiota and the metabolic activity in healthy and IBD donors (patients in remission and with a flare of IBD). The Simulator of the Human Intestinal Microbial Ecosystem (SHIME®) with a static (batch) configuration was used to evaluate the effects of food additives on the human intestinal microbiota. Polysorbate 80 and sucralose decreased butyrate-producing bacteria such as Roseburia and Faecalibacterium prausnitzii. Both compounds, also increased bacterial species positively correlated with intestinal inflammation and fibrosis (i.e.: Enterococcus, Veillonella and Mucispirillum schaedleri), especially in donors in remission of IBD. Additionally, polysorbate 80 induced a lower activity of the aryl hydrocarbon receptor (AhR) in the three groups of donors, which can affect the intestinal homeostasis. Maltodextrin, despite increasing short-chain fatty acids production, promoted the growth of Ruminococcus genus, correlated with higher risk of fibrosis, and decreased Oscillospira which is negatively associated with fibrosis. Our findings unveil crucial insights into the potential deleterious effects of polysorbate 80, sucralose and maltodextrin on human gut microbiota in healthy and, to a greater extent, in IBD patients.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Fermentación , Aditivos Alimentarios/efectos adversos , Ecosistema , Polisorbatos/efectos adversos , Fibrosis , Inflamación
5.
Microbiol Res ; 285: 127778, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823185

RESUMEN

Probiotics are host-friendly microorganisms that can have important health benefits in the human gut microbiota as dietary supplements. Maintaining a healthy gut microbial balance relies on the intricate interplay among the intestinal microbiota, metabolic activities, and the host's immune response. This study aims to explore if a mixture of Heyndrickxia coagulans [ATB-BCS-042] and Lacticaseibacillus casei [THT-030-401] promotes in vitro this balance in representative gut microbiota from healthy individuals using the Triple-SHIME® (Simulation of the Human Intestinal Microbial Ecosystem). Metataxonomic analysis of the intestinal microbes revealed that the probiotic mix was not causing important disruptions in the biodiversity or microbial composition of the three simulated microbiota. However, some targeted populations analyzed by qPCR were found to be disrupted at the end of the probiotic treatment or after one week of washout. Populations such as Cluster IV, Cluster XVIa, and Roseburia spp., were increased indicating a potential gut health-promoting butyrogenic effect of the probiotic supplementation. In two of the systems, bifidogenic effects were observed, while in the third, the treatment caused a decrease in bifidobacteria. For the health-detrimental biomarker Escherichia-Shigella, a mild decrease in all systems was observed in the proximal colon sections, but these genera were highly increased in the distal colon sections. By the end of the washout, Bacteroides-Prevotella was found consistently boosted, which could have inflammatory consequences in the intestinal context. Although the probiotics had minimal influence on most quantified metabolites, ammonia consistently decreased after one week of daily probiotic supplementation. In reporter gene assays, aryl hydrocarbon receptor (AhR) activation was favored by the metabolic output obtained from post-treatment periods. Exposure of a human intestinal cell model to fermentation supernatant obtained after probiotic supplementation induced a trend to decrease the mRNA expression of immunomodulatory cytokines (IL-6, IL-8). Overall, with some exceptions, a positive impact of H. coagulans and L. casei probiotic mix was observed in the three parallel experiments, despite inter-individual differences. This study might serve as an in vitro pipeline for the impact assessment of probiotic combinations on the human gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Lacticaseibacillus casei , Probióticos , Humanos , Probióticos/administración & dosificación , Microbioma Gastrointestinal/efectos de los fármacos , Voluntarios Sanos , Heces/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA