Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
FASEB J ; 35(8): e21791, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34320240

RESUMEN

Chemical neurotransmission typically occurs through synapses. Previous ultrastructural examinations of monoamine neuron axon terminals often failed to identify a pre- and postsynaptic coupling, leading to the concept of "volume" transmission. Whether this results from intrinsic properties of these neurons remains undefined. We find that dopaminergic neurons in vitro establish a distinctive axonal arbor compared to glutamatergic or GABAergic neurons in both size and propensity of terminals to avoid direct contact with target neurons. While most dopaminergic varicosities are active and contain exocytosis proteins like synaptotagmin 1, only ~20% of these are synaptic. The active zone protein bassoon was found to be enriched in dopaminergic terminals that are in proximity to a target cell. Finally, we found that the proteins neurexin-1αSS4- and neuroligin-1A+B play a critical role in the formation of synapses by dopamine (DA) neurons. Our findings suggest that DA neurons are endowed with a distinctive developmental connectivity program.


Asunto(s)
Axones/fisiología , Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Cuerpo Estriado/citología , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Moléculas de Adhesión Celular Neuronal/genética , Diferenciación Celular , Técnicas de Cocultivo/métodos , Dopamina/genética , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes , Inmunohistoquímica , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
2.
PLoS Genet ; 15(8): e1008352, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31449520

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Rare genetic mutations in genes such as Parkin, Pink1, DJ-1, α-synuclein, LRRK2 and GBA are found to be responsible for the disease in about 15% of the cases. A key unanswered question in PD pathophysiology is why would these mutations, impacting basic cellular processes such as mitochondrial function and neurotransmission, lead to selective degeneration of SNc DA neurons? We previously showed in vitro that SNc DA neurons have an extremely high rate of mitochondrial oxidative phosphorylation and ATP production, characteristics that appear to be the result of their highly complex axonal arborization. To test the hypothesis in vivo that axon arborization size is a key determinant of vulnerability, we selectively labeled SNc or VTA DA neurons using floxed YFP viral injections in DAT-cre mice and showed that SNc DA neurons have a much more arborized axon than those of the VTA. To further enhance this difference, which may represent a limiting factor in the basal vulnerability of these neurons, we selectively deleted in mice the DA D2 receptor (D2-cKO), a key negative regulator of the axonal arbour of DA neurons. In these mice, SNc DA neurons have a 2-fold larger axonal arborization, release less DA and are more vulnerable to a 6-OHDA lesion, but not to α-synuclein overexpression when compared to control SNc DA neurons. This work adds to the accumulating evidence that the axonal arborization size of SNc DA neurons plays a key role in their vulnerability in the context of PD.


Asunto(s)
Neuronas Dopaminérgicas/patología , Plasticidad Neuronal/genética , Enfermedad de Parkinson/patología , Porción Compacta de la Sustancia Negra/patología , Receptores de Dopamina D2/genética , Animales , Axones/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Mitocondrias/patología , Fosforilación Oxidativa , Enfermedad de Parkinson/genética , Porción Compacta de la Sustancia Negra/citología , Receptores de Dopamina D2/metabolismo
3.
J Neurosci ; 40(43): 8262-8275, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-32928885

RESUMEN

A subset of adult ventral tegmental area dopamine (DA) neurons expresses vesicular glutamate transporter 2 (VGluT2) and releases glutamate as a second neurotransmitter in the striatum, while only few adult substantia nigra DA neurons have this capacity. Recent work showed that cellular stress created by neurotoxins such as MPTP and 6-hydroxydopamine can upregulate VGluT2 in surviving DA neurons, suggesting the possibility of a role in cell survival, although a high level of overexpression could be toxic to DA neurons. Here we examined the level of VGluT2 upregulation in response to neurotoxins and its impact on postlesional plasticity. We first took advantage of an in vitro neurotoxin model of Parkinson's disease and found that this caused an average 2.5-fold enhancement of Vglut2 mRNA in DA neurons. This could represent a reactivation of a developmental phenotype because using an intersectional genetic lineage-mapping approach, we find that >98% of DA neurons have a VGluT2+ lineage. Expression of VGluT2 was detectable in most DA neurons at embryonic day 11.5 and was localized in developing axons. Finally, compatible with the possibility that enhanced VGluT2 expression in DA neurons promotes axonal outgrowth and reinnervation in the postlesional brain, we observed that DA neurons in female and male mice in which VGluT2 was conditionally removed established fewer striatal connections 7 weeks after a neurotoxin lesion. Thus, we propose here that the developmental expression of VGluT2 in DA neurons can be reactivated at postnatal stages, contributing to postlesional plasticity of dopaminergic axons.SIGNIFICANCE STATEMENT A small subset of dopamine neurons in the adult, healthy brain expresses vesicular glutamate transporter 2 (VGluT2) and thus releases glutamate as a second neurotransmitter in the striatum. This neurochemical phenotype appears to be plastic as exposure to neurotoxins, such as 6-OHDA or MPTP, that model certain aspects of Parkinson's disease pathophysiology, boosts VGluT2 expression in surviving dopamine neurons. Here we show that this enhanced VGluT2 expression in dopamine neurons drives axonal outgrowth and contributes to dopamine neuron axonal plasticity in the postlesional brain. A better understanding of the neurochemical changes that occur during the progression of Parkinson's disease pathology will aid the development of novel therapeutic strategies for this disease.


Asunto(s)
Cuerpo Estriado/fisiología , Neuronas Dopaminérgicas/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/biosíntesis , Animales , Animales Recién Nacidos , Axones/fisiología , Linaje de la Célula/genética , Supervivencia Celular/genética , Cuerpo Estriado/embriología , Cuerpo Estriado/crecimiento & desarrollo , Femenino , Intoxicación por MPTP/genética , Intoxicación por MPTP/metabolismo , Mesencéfalo/embriología , Mesencéfalo/crecimiento & desarrollo , Mesencéfalo/fisiología , Ratones , Ratones Noqueados , Vías Nerviosas/embriología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/fisiología , Neurotoxinas/toxicidad , Embarazo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética
4.
J Chem Phys ; 153(12): 124702, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33003723

RESUMEN

Plasmonic nanostructures have found increasing utility due to the increased popularity that surface-enhanced Raman scattering (SERS) has achieved in recent years. SERS has been incorporated into an ever-growing list of applications, with bioanalytical and physiological analyses having emerged as two of the most popular. Thus far, the transition from SERS studies of cultured cells to SERS studies involving tissue has been gradual and limited. In most cases, SERS measurements in more intact tissue have involved nanoparticles distributed throughout the tissue or localized to specific regions via external functionalization. Performing highly localized measurements without the need for global nanoparticle uptake or specialized surface modifications would be advantageous to the expansion of SERS measurements in tissue. To this end, this work provides critical insight with supporting experimental evidence into performing SERS measurements with nanosensors inserted in tissues. We address two critical steps that are otherwise underappreciated when other approaches to performing SERS measurements in tissue are used. Specifically, we demonstrate two mechanical routes for controlled positioning and inserting the nanosensors into the tissue, and we discuss two means of focusing on the nanosensors both before and after they are inserted into the tissue. By examining the various combinations of these steps, we provide a blueprint for performing SERS measurements with nanosensors inserted in tissue. This blueprint could prove useful for the general development of SERS as a tool for bioanalytical and physiological studies and for more specialized techniques such as SERS-optophysiology.


Asunto(s)
Encéfalo/citología , Nanofibras/química , Animales , Ratones , Espectrometría Raman , Propiedades de Superficie
5.
Alzheimers Res Ther ; 15(1): 174, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833786

RESUMEN

BACKGROUND: Soluble amyloid-beta oligomers (Aßo) begin to accumulate in the human brain one to two decades before a clinical diagnosis of Alzheimer's disease (AD). The literature supports that soluble Aßo are implicated in synapse and neuronal losses in the brain regions such as the hippocampus. This region importantly contributes to explicit memory, the first type of memory affected in AD. During AD preclinical and prodromal stages, people are also experiencing wake/sleep alterations such as insomnia (e.g., difficulty initiating sleep, decreased sleep duration), excessive daytime sleepiness, and sleep schedule modifications. In addition, changes in electroencephalographic (EEG) activity during wake and sleep have been reported in AD patients and animal models. However, the specific contribution of Aßo to wake/sleep alterations is poorly understood and was investigated in the present study. METHODS: Chronic hippocampal injections of soluble Aßo were conducted in male rats and combined with EEG recording to determine the progressive impact of Aß pathology specifically on wake/sleep architecture and EEG activity. Bilateral injections were conducted for 6 consecutive days, and EEG acquisition was done before, during, and after Aßo injections. Immunohistochemistry was used to assess neuron numbers in the hippocampal dentate gyrus (DG). RESULTS: Aßo injections did not affect the time spent in wakefulness, slow wave sleep (SWS), and paradoxical sleep but altered EEG activity during wake and SWS. More precisely, Aßo increased slow-wave activity (SWA; 0.5-5 Hz) and low-beta activity (16-20 Hz) during wake and decreased theta (5-9 Hz) and alpha (9-12 Hz) activities during SWS. Moreover, the theta activity/SWA ratio during wake and SWS was decreased by Aßo. These effects were significant only after 6 days of Aßo injections and were found with alterations in neuron counts in the DG. CONCLUSIONS: We found multiple modifications of the wake and SWS EEG following Aßo delivery to the hippocampus. These findings expose a specific EEG signature of Aß pathology and can serve the development of non-invasive and cost-effective markers for the early diagnosis of AD or other amyloid-related diseases.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Sueño de Onda Lenta , Animales , Humanos , Masculino , Ratas , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Electroencefalografía , Hipocampo/patología , Sueño/fisiología
6.
Chronobiol Int ; 40(8): 983-1003, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37551686

RESUMEN

Circadian rhythms originate from molecular feedback loops. In mammals, the transcription factors CLOCK and BMAL1 act on regulatory elements (i.e. E-boxes) to shape biological functions in a rhythmic manner. The EPHA4 receptor and its ligands Ephrins (EFN) are cell adhesion molecules regulating neurotransmission and neuronal morphology. Previous studies showed the presence of E-boxes in the genes of EphA4 and specific Ephrins, and that EphA4 knockout mice have an altered circadian rhythm of locomotor activity. We thus hypothesized that the core clock machinery regulates the gene expression of EphA4, EfnB2 and EfnA3. CLOCK and BMAL1 (or NPAS2 and BMAL2) were found to have transcriptional activity on distal and proximal regions of EphA4, EfnB2 and EfnA3 putative promoters. A constitutively active form of glycogen synthase kinase 3ß (GSK3ß; a negative regulator of CLOCK and BMAL1) blocked the transcriptional induction. Mutating the E-boxes of EphA4 distal promoter sequence reduced transcriptional induction. EPHA4 and EFNB2 protein levels did not show circadian variations in the mouse suprachiasmatic nucleus or prefrontal cortex. The findings uncover that core circadian transcription factors can regulate the gene expression of elements of the Eph/Ephrin system, which might contribute to circadian rhythmicity in biological processes in the brain or peripheral tissues.


Asunto(s)
Relojes Circadianos , Animales , Ratones , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Efrina-A3 , Efrina-B2 , Mamíferos/metabolismo , Receptor EphA4/metabolismo
7.
Nat Commun ; 14(1): 4120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37433762

RESUMEN

In Parkinson's disease (PD), motor dysfunctions only become apparent after extensive loss of DA innervation. This resilience has been hypothesized to be due to the ability of many motor behaviors to be sustained through a diffuse basal tone of DA; but experimental evidence for this is limited. Here we show that conditional deletion of the calcium sensor synaptotagmin-1 (Syt1) in DA neurons (Syt1 cKODA mice) abrogates most activity-dependent axonal DA release in the striatum and mesencephalon, leaving somatodendritic (STD) DA release intact. Strikingly, Syt1 cKODA mice showed intact performance in multiple unconditioned DA-dependent motor tasks and even in a task evaluating conditioned motivation for food. Considering that basal extracellular DA levels in the striatum were unchanged, our findings suggest that activity-dependent DA release is dispensable for such tasks and that they can be sustained by a basal tone of extracellular DA. Taken together, our findings reveal the striking resilience of DA-dependent motor functions in the context of a near-abolition of phasic DA release, shedding new light on why extensive loss of DA innervation is required to reveal motor dysfunctions in PD.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Sinaptotagmina I , Animales , Ratones , Calcio , Cuerpo Estriado , Neostriado , Niacinamida , Sinaptotagmina I/fisiología
8.
Elife ; 122023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37409563

RESUMEN

Midbrain dopamine (DA) neurons are key regulators of basal ganglia functions. The axonal domain of these neurons is highly complex, with a large subset of non-synaptic release sites and a smaller subset of synaptic terminals from which in addition to DA, glutamate or GABA are also released. The molecular mechanisms regulating the connectivity of DA neurons and their neurochemical identity are unknown. An emerging literature suggests that neuroligins, trans-synaptic cell adhesion molecules, regulate both DA neuron connectivity and neurotransmission. However, the contribution of their major interaction partners, neurexins (Nrxns), is unexplored. Here, we tested the hypothesis that Nrxns regulate DA neuron neurotransmission. Mice with conditional deletion of all Nrxns in DA neurons (DAT::NrxnsKO) exhibited normal basic motor functions. However, they showed an impaired locomotor response to the psychostimulant amphetamine. In line with an alteration in DA neurotransmission, decreased levels of the membrane DA transporter (DAT) and increased levels of the vesicular monoamine transporter (VMAT2) were detected in the striatum of DAT::NrxnsKO mice, along with reduced activity-dependent DA release. Strikingly, electrophysiological recordings revealed an increase of GABA co-release from DA neuron axons in the striatum of these mice. Together, these findings suggest that Nrxns act as regulators of the functional connectivity of DA neurons.


The human brain contains billions of nerve cells, known as neurons, which receive input from the outside world and process this information in the brain. Neurons communicate with each other by releasing chemical messengers from specialized structures, called axon terminals, some of which form junctions known as synapses. These messengers then generate signals in the target neurons. Based on the type of chemical they release, neurons can be classified into different types. For example, neurons releasing dopamine are considered to act as key regulators of learning, movements and motivation. Such neurons establish very large numbers of axon terminals, but very few of them form synapses. Specific sets of proteins, including neurexins and neuroligins, are thought to help regulate the activity of the connexions between these neurons. Previous research has shown that when neuroligins were removed from the neurons of worms or mice, it affected the ability of the animals to move. So far, the role of neurexins in managing the connectivity of regulatory neurons, such as those releasing dopamine, has received much less attention. To bridge this knowledge gap, Ducrot et al. explored how removing neurexins from dopamine neurons in mice affected their behaviour. The experiments revealed that eliminating neurexins did not affect their motor skills on a rotating rod, but it did reduce their movements in response to the psychostimulant amphetamine, a molecule known to enhance dopamine-associated behaviours. The cellular structure of dopamine neurons lacking neurexins was the same as in neurons containing this protein. But dopamine neurons without neurexins were slower to recycle dopamine, and they released a higher amount of the inhibitory messenger GABA. This suggests that neurexin acts as an important suppressor of GABA secretion to help regulate the signals released by dopamine neurons. These findings set the stage for further research into the role of neurexins in regulating dopamine and other populations of neurons in conditions such as Parkinson's disease, where movement and coordination are affected.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Neuronas Dopaminérgicas , Ratones , Animales , Neuronas Dopaminérgicas/metabolismo , Transmisión Sináptica/fisiología , Terminales Presinápticos , Ácido gamma-Aminobutírico/metabolismo
9.
Open Biol ; 12(3): 210339, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35232250

RESUMEN

Dopamine (DA) neurons can release DA not just from axon terminals, but also from their somatodendritic (STD) compartment through a mechanism that is still incompletely understood. Using voltammetry in mouse mesencephalic brain slices, we find that STD DA release has low capacity and shows a calcium sensitivity that is comparable to that of axonal release. We find that the molecular mechanism of STD DA release differs from axonal release with regard to the implication of synaptotagmin (Syt) calcium sensors. While individual constitutive knockout of Syt4 or Syt7 is not sufficient to reduce STD DA release, the removal of both isoforms reduces this release by approximately 50%, leaving axonal release unimpaired. Our work unveils clear differences in the mechanisms of STD and axonal DA release.


Asunto(s)
Dopamina , Enfermedades de Transmisión Sexual , Animales , Calcio/metabolismo , Dendritas/metabolismo , Mesencéfalo/metabolismo , Ratones , Sustancia Negra/metabolismo , Sinaptotagminas/genética
10.
Neuropsychopharmacology ; 46(2): 305-315, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32682325

RESUMEN

D-amphetamine maintenance therapy shows promise as a treatment for people with cocaine addiction. Preclinical studies using Long Access (LgA) cocaine self-administration procedures suggest D-amphetamine may act by preventing tolerance to cocaine's effects at the dopamine transporter (DAT). However, Intermittent Access (IntA) cocaine self-administration better reflects human patterns of use, is especially effective in promoting addiction-relevant behaviors, and instead of tolerance, produces psychomotor, incentive, and neural sensitization. We asked, therefore, how D-amphetamine maintenance during IntA influences cocaine use and cocaine's potency at the DAT. Male rats self-administered cocaine intermittently (5 min ON, 25 min OFF x10; 5-h/session) for 14 sessions, with or without concomitant D-amphetamine maintenance therapy during these 14 sessions (5 mg/kg/day via s.c. osmotic minipump). We then assessed responding for cocaine under a progressive ratio schedule, responding under extinction and cocaine-primed reinstatement of drug seeking. We also assessed the ability of cocaine to inhibit dopamine uptake in the nucleus accumbens core using fast scan cyclic voltammetry ex vivo. IntA cocaine self-administration produced psychomotor (locomotor) sensitization, strong motivation to take and seek cocaine, and it increased cocaine's potency at the DAT. D-amphetamine co-administration suppressed the psychomotor sensitization produced by IntA cocaine experience. After cessation of D-amphetamine treatment, the motivation to take and seek cocaine was also reduced, and sensitization of cocaine's actions at the DAT was reversed. Thus, treatment with D-amphetamine might reduce cocaine use by preventing sensitization-related changes in cocaine potency at the DAT, consistent with an incentive-sensitization view of addiction.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Anfetamina , Animales , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Dopamina , Inhibidores de Captación de Dopamina , Masculino , Ratas , Ratas Sprague-Dawley , Autoadministración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA