Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(12): e1011849, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38055760

RESUMEN

Herpes simplex virus 1 (HSV-1) is a neurotropic virus that remains latent in neuronal cell bodies but reactivates throughout an individual's life, causing severe adverse reactions, such as herpes simplex encephalitis (HSE). Recently, it has also been implicated in the etiology of Alzheimer's disease (AD). The absence of an effective vaccine and the emergence of numerous drug-resistant variants have called for the development of new antiviral agents that can tackle HSV-1 infection. Host-targeting antivirals (HTAs) have recently emerged as promising antiviral compounds that act on host-cell factors essential for viral replication. Here we show that a new class of HTAs targeting peptidylarginine deiminases (PADs), a family of calcium-dependent enzymes catalyzing protein citrullination, exhibits a marked inhibitory activity against HSV-1. Furthermore, we show that HSV-1 infection leads to enhanced protein citrullination through transcriptional activation of three PAD isoforms: PAD2, PAD3, and PAD4. Interestingly, PAD3-depletion by specific drugs or siRNAs dramatically inhibits HSV-1 replication. Finally, an analysis of the citrullinome reveals significant changes in the deimination levels of both cellular and viral proteins, with the interferon (IFN)-inducible proteins IFIT1 and IFIT2 being among the most heavily deiminated ones. As genetic depletion of IFIT1 and IFIT2 strongly enhances HSV-1 growth, we propose that viral-induced citrullination of IFIT1 and 2 is a highly efficient HSV-1 evasion mechanism from host antiviral resistance. Overall, our findings point to a crucial role of citrullination in subverting cellular responses to viral infection and demonstrate that PAD inhibitors efficiently suppress HSV-1 infection in vitro, which may provide the rationale for their repurposing as HSV-1 antiviral drugs.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/fisiología , Citrulinación , Factores de Restricción Antivirales , Proteínas Virales/metabolismo , Replicación Viral , Antivirales/farmacología , Antivirales/metabolismo
2.
J Virol ; 97(8): e0078123, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37565748

RESUMEN

The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the alpha-herpesviruses herpes simplex virus (HSV)-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting the involvement of an immediate early or early (IE/E) viral protein. In support of this possibility, genetic (IE1 mutant) and pharmacologic (cycloheximide) strategies that prevent the expression of IE/E viral proteins also block APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which interferes with viral late protein expression, still permits A3B relocalization. These results combine to indicate that the beta-herpesvirus HCMV uses an RNR-independent, yet phenotypically similar, molecular mechanism to antagonize APOBEC3B. IMPORTANCE Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Infecciones por Herpesviridae , Herpesvirus Humano 1 , Ribonucleótido Reductasas , Humanos , Recién Nacido , Citidina Desaminasa/metabolismo , Citomegalovirus/genética , Replicación del ADN , ADN Viral/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 4/genética , Proteínas Inmediatas-Precoces/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral
3.
PLoS Pathog ; 16(5): e1008476, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32384127

RESUMEN

Cytomegaloviruses (order Herpesvirales) display remarkable species-specificity as a result of long-term co-evolution with their mammalian hosts. Human cytomegalovirus (HCMV) is exquisitely adapted to our species and displays high genetic diversity. We leveraged information on inter-species divergence of primate-infecting cytomegaloviruses and intra-species diversity of clinical isolates to provide a genome-wide picture of HCMV adaptation across different time-frames. During adaptation to the human host, core viral genes were commonly targeted by positive selection. Functional characterization of adaptive mutations in the primase gene (UL70) indicated that selection favored amino acid replacements that decrease viral replication in human fibroblasts, suggesting evolution towards viral temperance. HCMV intra-species diversity was largely governed by immune system-driven selective pressure, with several adaptive variants located in antigenic domains. A significant excess of positively selected sites was also detected in the signal peptides (SPs) of viral proteins, indicating that, although they are removed from mature proteins, SPs can contribute to viral adaptation. Functional characterization of one of these SPs indicated that adaptive variants modulate the timing of cleavage by the signal peptidase and the dynamics of glycoprotein intracellular trafficking. We thus used evolutionary information to generate experimentally-testable hypotheses on the functional effect of HCMV genetic diversity and we define modulators of viral phenotypes.


Asunto(s)
Adaptación Biológica/genética , Infecciones por Citomegalovirus/genética , Citomegalovirus/genética , Adaptación Fisiológica/genética , Animales , Evolución Biológica , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/metabolismo , Evolución Molecular , Glicoproteínas/metabolismo , Interacciones Microbiota-Huesped/genética , Humanos , Filogenia , Especificidad de la Especie , Proteínas Virales/metabolismo
4.
PLoS Pathog ; 16(9): e1008855, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32986788

RESUMEN

SAMHD1 is a host restriction factor that functions to restrict both retroviruses and DNA viruses, based on its nuclear deoxynucleotide triphosphate (dNTP) hydrolase activity that limits availability of intracellular dNTP pools. In the present study, we demonstrate that SAMHD1 expression was increased following human cytomegalovirus (HCMV) infection, with only a modest effect on infectious virus production. SAMHD1 was rapidly phosphorylated at residue T592 after infection by cellular cyclin-dependent kinases, especially Cdk2, and by the viral kinase pUL97, resulting in a significant fraction of phosho-SAMHD1 being relocalized to the cytoplasm of infected fibroblasts, in association with viral particles and dense bodies. Thus, our findings indicate that HCMV-dependent SAMHD1 cytoplasmic delocalization and inactivation may represent a potential novel mechanism of HCMV evasion from host antiviral restriction activities.


Asunto(s)
Infecciones por Citomegalovirus/virología , Citomegalovirus/patogenicidad , Infecciones por Herpesviridae/metabolismo , Proteína 1 que Contiene Dominios SAM y HD/genética , Antivirales/farmacología , Quinasas Ciclina-Dependientes/metabolismo , Citomegalovirus/genética , Citoplasma/metabolismo , Citoplasma/virología , Humanos , Proteínas de Unión al GTP Monoméricas/metabolismo , Fosforilación , Replicación Viral/efectos de los fármacos
5.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573337

RESUMEN

Besides smoking and alcohol, human papillomavirus (HPV) is a factor promoting head and neck squamous cell carcinoma (HNSCC). In some human tumors, including HNSCC, a number of mutations are caused by aberrantly activated DNA-modifying enzymes, such as the apolipoprotein B mRNA editing enzyme catalytic polypeptide-like (APOBEC) family of cytidine deaminases. As the enzymatic activity of APOBEC proteins contributes to the innate immune response to viruses, including HPV, the role of APOBEC proteins in HPV-driven head and neck carcinogenesis has recently gained increasing attention. Ongoing research efforts take the cue from two key observations: (1) APOBEC expression depends on HPV infection status in HNSCC; and (2) APOBEC activity plays a major role in HPV-positive HNSCC mutagenesis. This review focuses on recent advances on the role of APOBEC proteins in HPV-positive vs. HPV-negative HNSCC.


Asunto(s)
Desaminasas APOBEC/genética , Alphapapillomavirus/inmunología , Neoplasias de Cabeza y Cuello/inmunología , Infecciones por Papillomavirus/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Desaminasas APOBEC/metabolismo , Carcinogénesis/genética , Carcinogénesis/inmunología , Carcinogénesis/patología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/virología , Humanos , Inmunidad Innata/genética , Mutagénesis/inmunología , Mutación , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/virología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/virología
6.
Molecules ; 26(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361731

RESUMEN

Strigolactones (SLs) are a class of sesquiterpenoid plant hormones that play a role in the response of plants to various biotic and abiotic stresses. When released into the rhizosphere, they are perceived by both beneficial symbiotic mycorrhizal fungi and parasitic plants. Due to their multiple roles, SLs are potentially interesting agricultural targets. Indeed, the use of SLs as agrochemicals can favor sustainable agriculture via multiple mechanisms, including shaping root architecture, promoting ideal branching, stimulating nutrient assimilation, controlling parasitic weeds, mitigating drought and enhancing mycorrhization. Moreover, over the last few years, a number of studies have shed light onto the effects exerted by SLs on human cells and on their possible applications in medicine. For example, SLs have been demonstrated to play a key role in the control of pathways related to apoptosis and inflammation. The elucidation of the molecular mechanisms behind their action has inspired further investigations into their effects on human cells and their possible uses as anti-cancer and antimicrobial agents.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Lactonas/farmacología , Micorrizas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Plantas/metabolismo , Sesquiterpenos/farmacología , Adaptación Fisiológica , Agricultura/métodos , Agroquímicos/aislamiento & purificación , Agroquímicos/metabolismo , Agroquímicos/farmacología , Antibacterianos/biosíntesis , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Antineoplásicos/aislamiento & purificación , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/aislamiento & purificación , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Humanos , Inflamación/prevención & control , Lactonas/aislamiento & purificación , Lactonas/metabolismo , Micorrizas/química , Neoplasias/tratamiento farmacológico , Patentes como Asunto , Reguladores del Crecimiento de las Plantas/biosíntesis , Reguladores del Crecimiento de las Plantas/aislamiento & purificación , Plantas/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/metabolismo , Estrés Fisiológico , Control de Malezas/métodos
7.
Molecules ; 26(16)2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34443515

RESUMEN

Current therapy against herpes simplex viruses (HSV) relies on the use of a few nucleoside antivirals such as acyclovir, famciclovir and valacyclovir. However, the current drugs are ineffective against latent and drug-resistant HSV infections. A series of amidinourea compounds, designed as analogues of the antiviral drug moroxydine, has been synthesized and evaluated as potential non-nucleoside anti-HSV agents. Three compounds showed micromolar activity against HSV-1 and low cytotoxicity, turning to be promising candidates for future optimization. Preliminary mode of action studies revealed that the new compounds act in an early stage of the HSV replication cycle, just after the viral attachment and the entry phase of the infection.


Asunto(s)
Guanidina/análogos & derivados , Herpes Simple/tratamiento farmacológico , Herpesvirus Humano 1/efectos de los fármacos , Simplexvirus/efectos de los fármacos , Urea/análogos & derivados , Aciclovir/efectos adversos , Aciclovir/farmacología , Antivirales/farmacología , Farmacorresistencia Viral/genética , Guanidina/síntesis química , Guanidina/farmacología , Herpes Simple/virología , Herpesvirus Humano 1/patogenicidad , Humanos , Simplexvirus/genética , Simplexvirus/patogenicidad , Urea/síntesis química , Urea/farmacología
8.
J Virol ; 93(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31534038

RESUMEN

An integral part of the antiviral innate immune response is the APOBEC3 family of single-stranded DNA cytosine deaminases, which inhibits virus replication through deamination-dependent and -independent activities. Viruses have evolved mechanisms to counteract these enzymes, such as HIV-1 Vif-mediated formation of a ubiquitin ligase to degrade virus-restrictive APOBEC3 enzymes. A new example is Epstein-Barr virus (EBV) ribonucleotide reductase (RNR)-mediated inhibition of cellular APOBEC3B (A3B). The large subunit of the viral RNR, BORF2, causes A3B relocalization from the nucleus to cytoplasmic bodies and thereby protects viral DNA during lytic replication. Here, we use coimmunoprecipitation and immunofluorescence microscopy approaches to ask whether this mechanism is shared with the closely related gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) and the more distantly related alphaherpesvirus herpes simplex virus 1 (HSV-1). The large RNR subunit of KSHV, open reading frame 61 (ORF61), coprecipitated multiple APOBEC3s, including A3B and APOBEC3A (A3A). KSHV ORF61 also caused relocalization of these two enzymes to perinuclear bodies (A3B) and to oblong cytoplasmic structures (A3A). The large RNR subunit of HSV-1, ICP6, also coprecipitated A3B and A3A and was sufficient to promote the relocalization of these enzymes from nuclear to cytoplasmic compartments. HSV-1 infection caused similar relocalization phenotypes that required ICP6. However, unlike the infectivity defects previously reported for BORF2-null EBV, ICP6 mutant HSV-1 showed normal growth rates and plaque phenotypes. Combined, these results indicate that both gamma- and alphaherpesviruses use a conserved RNR-dependent mechanism to relocalize A3B and A3A and furthermore suggest that HSV-1 possesses at least one additional mechanism to neutralize these antiviral enzymes.IMPORTANCE The APOBEC3 family of DNA cytosine deaminases constitutes a vital innate immune defense against a range of different viruses. A novel counterrestriction mechanism has recently been uncovered for the gammaherpesvirus EBV, in which a subunit of the viral protein known to produce DNA building blocks (ribonucleotide reductase) causes A3B to relocalize from the nucleus to the cytosol. Here, we extend these observations with A3B to include a closely related gammaherpesvirus, KSHV, and a more distantly related alphaherpesvirus, HSV-1. These different viral ribonucleotide reductases also caused relocalization of A3A, which is 92% identical to A3B. These studies are important because they suggest a conserved mechanism of APOBEC3 evasion by large double-stranded DNA herpesviruses. Strategies to block this host-pathogen interaction may be effective for treating infections caused by these herpesviruses.


Asunto(s)
Citidina Desaminasa/metabolismo , Ribonucleótido Reductasas/metabolismo , Proteínas Virales/metabolismo , Desaminasas APOBEC , Línea Celular , Citosina Desaminasa/metabolismo , Células HEK293 , Herpes Simple , Infecciones por Herpesviridae , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Interacciones Huésped-Patógeno , Humanos , Inmunidad Innata , Antígenos de Histocompatibilidad Menor/metabolismo , Proteínas/metabolismo , Replicación Viral
9.
J Immunol ; 200(6): 2076-2089, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29386255

RESUMEN

Although it is clear that high-risk human papillomaviruses (HPVs) can selectively infect keratinocytes and persist in the host, it still remains to be unequivocally determined whether they can escape antiviral innate immunity by interfering with pattern recognition receptor (PRR) signaling. In this study, we have assessed the innate immune response in monolayer and organotypic raft cultures of NIKS cells harboring multiple copies of episomal HPV18 (NIKSmcHPV18), which fully recapitulates the persistent state of infection. We show for the first time, to our knowledge, that NIKSmcHPV18, as well as HeLa cells (a cervical carcinoma-derived cell line harboring integrated HPV18 DNA), display marked downregulation of several PRRs, as well as other PRR downstream effectors, such as the adaptor protein stimulator of IFN genes and the transcription factors IRF1 and 7. Importantly, we provide evidence that downregulation of stimulator of IFN genes, cyclic GMP-AMP synthase, and retinoic acid-inducible gene I mRNA levels occurs at the transcriptional level through a novel epigenetic silencing mechanism, as documented by the accumulation of repressive heterochromatin markers seen at the promoter region of these genes. Furthermore, stimulation of NIKSmcHPV18 cells with salmon sperm DNA or poly(deoxyadenylic-deoxythymidylic) acid, two potent inducers of PRR signaling, only partially restored PRR protein expression. Accordingly, the production of IFN-ß and IFN-λ1 was significantly reduced in comparison with the parental NIKS cells, indicating that HPV18 exerts its immunosuppressive activity through downregulation of PRR signaling. Altogether, our findings indicate that high-risk human papillomaviruses have evolved broad-spectrum mechanisms that allow simultaneous depletion of multiple effectors of the innate immunity network, thereby creating an unreactive cellular milieu suitable for viral persistence.


Asunto(s)
ADN/genética , Papillomavirus Humano 18/genética , Interferón beta/genética , Receptores de Reconocimiento de Patrones/genética , Transducción de Señal/genética , Transcripción Genética/genética , Células 3T3 , Animales , Línea Celular , Línea Celular Tumoral , Regulación hacia Abajo/genética , Regulación Viral de la Expresión Génica/genética , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Inmunidad Innata/genética , Queratinocitos/virología , Ligandos , Ratones
10.
J Virol ; 92(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30045985

RESUMEN

The apolipoprotein B editing enzyme catalytic subunit 3 (APOBEC3) is a family of DNA cytosine deaminases that mutate and inactivate viral genomes by single-strand DNA editing, thus providing an innate immune response against a wide range of DNA and RNA viruses. In particular, APOBEC3A (A3A), a member of the APOBEC3 family, is induced by human cytomegalovirus (HCMV) in decidual tissues where it efficiently restricts HCMV replication, thereby acting as an intrinsic innate immune effector at the maternal-fetal interface. However, the widespread incidence of congenital HCMV infection implies that HCMV has evolved to counteract APOBEC3-induced mutagenesis through mechanisms that still remain to be fully established. Here, we have assessed gene expression and deaminase activity of various APOBEC3 gene family members in HCMV-infected primary human foreskin fibroblasts (HFFs). Specifically, we show that APOBEC3G (A3G) gene products and, to a lesser degree, those of A3F but not of A3A, are upregulated in HCMV-infected HFFs. We also show that HCMV-mediated induction of A3G expression is mediated by interferon beta (IFN-ß), which is produced early during HCMV infection. However, knockout or overexpression of A3G does not affect HCMV replication, indicating that A3G is not a restriction factor for HCMV. Finally, through a bioinformatics approach, we show that HCMV has evolved mutational robustness against IFN-ß by limiting the presence of A3G hot spots in essential open reading frames (ORFs) of its genome. Overall, our findings uncover a novel immune evasion strategy by HCMV with profound implications for HCMV infections.IMPORTANCE APOBEC3 family of proteins plays a pivotal role in intrinsic immunity defense mechanisms against multiple viral infections, including retroviruses, through the deamination activity. However, the currently available data on APOBEC3 editing mechanisms upon HCMV infection remain unclear. In the present study, we show that particularly the APOBEC3G (A3G) member of the deaminase family is strongly induced upon infection with HCMV in fibroblasts and that its upregulation is mediated by IFN-ß. Furthermore, we were able to demonstrate that neither A3G knockout nor A3G overexpression appears to modulate HCMV replication, indicating that A3G does not inhibit HCMV replication. This may be explained by HCMV escape strategy from A3G activity through depletion of the preferred nucleotide motifs (hot spots) from its genome. The results may shed light on antiviral potential of APOBEC3 activity during HCMV infection, as well as the viral counteracting mechanisms under A3G-mediated selective pressure.


Asunto(s)
Desaminasa APOBEC-3G/genética , Citomegalovirus/genética , Genoma Viral , Evasión Inmune , Interferón beta/genética , Desaminasa APOBEC-3G/inmunología , Sistemas CRISPR-Cas , Línea Celular , Biología Computacional , Citomegalovirus/inmunología , Células Epiteliales/inmunología , Células Epiteliales/virología , Fibroblastos/inmunología , Fibroblastos/virología , Prepucio/citología , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/virología , Humanos , Inmunidad Innata , Interferón beta/inmunología , Masculino , Mutagénesis , Sistemas de Lectura Abierta , Cultivo Primario de Células , Transducción de Señal , Células THP-1 , Replicación Viral
11.
J Virol ; 92(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29263269

RESUMEN

The innate immune response plays a pivotal role during human cytomegalovirus (HCMV) primary infection. Indeed, HCMV infection of primary fibroblasts rapidly triggers strong induction of type I interferons (IFN-I), accompanied by proinflammatory cytokine release. Here, we show that primary human foreskin fibroblasts (HFFs) infected with a mutant HCMV TB40/E strain unable to express UL83-encoded pp65 (v65Stop) produce significantly higher IFN-ß levels than HFFs infected with the wild-type TB40/E strain or the pp65 revertant (v65Rev), suggesting that the tegument protein pp65 may dampen IFN-ß production. To clarify the mechanisms through which pp65 inhibits IFN-ß production, we analyzed the activation of the cGAS/STING/IRF3 axis in HFFs infected with either the wild type, the revertant v65Rev, or the pp65-deficient mutant v65Stop. We found that pp65 selectively binds to cGAS and prevents its interaction with STING, thus inactivating the signaling pathway through the cGAS/STING/IRF3 axis. Consistently, addition of exogenous cGAMP to v65Rev-infected cells triggered the production of IFN-ß levels similar to those observed with v65Stop-infected cells, confirming that pp65 inactivation of IFN-ß production occurs at the cGAS level. Notably, within the first 24 h of HCMV infection, STING undergoes proteasome degradation independently of the presence or absence of pp65. Collectively, our data provide mechanistic insights into the interplay between HCMV pp65 and cGAS, leading to subsequent immune evasion by this prominent DNA virus.IMPORTANCE Primary human foreskin fibroblasts (HFFs) produce type I IFN (IFN-I) when infected with HCMV. However, we observed significantly higher IFN-ß levels when HFFs were infected with HCMV that was unable to express UL83-encoded pp65 (v65Stop), suggesting that pp65 (pUL83) may constitute a viral evasion factor. This study demonstrates that the HCMV tegument protein pp65 inhibits IFN-ß production by binding and inactivating cGAS early during infection. In addition, this inhibitory activity specifically targets cGAS, since it can be bypassed via the addition of exogenous cGAMP, even in the presence of pp65. Notably, STING proteasome-mediated degradation was observed in both the presence and absence of pp65. Collectively, our data underscore the important role of the tegument protein pp65 as a critical molecular hub in HCMV's evasion strategy against the innate immune response.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Evasión Inmune/inmunología , Interferón Tipo I/inmunología , Proteínas de la Membrana/inmunología , Nucleotidiltransferasas/inmunología , Fosfoproteínas/inmunología , Transducción de Señal/inmunología , Proteínas de la Matriz Viral/inmunología , Citomegalovirus/genética , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/patología , Células HEK293 , Humanos , Evasión Inmune/genética , Inmunidad Innata/genética , Interferón Tipo I/genética , Proteínas de la Membrana/genética , Nucleotidiltransferasas/genética , Fosfoproteínas/genética , Unión Proteica , Transducción de Señal/genética , Proteínas de la Matriz Viral/genética
12.
Mol Biol Rep ; 46(3): 3333-3347, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30980272

RESUMEN

The aim of the present study is to determine the expression levels of PYHIN (IFI16 and AIM2) and APOBEC3 (A3A, A3B, A3C, A3D, A3F, A3G, and A3H) gene family members in a cohort of patients with head and neck squamous cell carcinoma (HNSCC) and assess their potential correlation with human papillomavirus (HPV) infection status, clinical characteristics, and survival. For this purpose, 34 HNSCC tissue specimens along with healthy surrounding mucosa were collected from patients surgically treated for HNSCC. Nucleic acids were isolated to assess the presence of HPV and the expression levels of selected molecular markers. Survival analysis was carried out using the Kaplan-Meier method. In HPV-negative (HPV-) HNSCCs, we detected low mRNA expression levels of IFI16, A3A, and A3B, whereas these genes were upregulated of 2-100 folds in HPV-positive (HPV+) tumors (p < 0.05). Interestingly, AIM2 gene expression levels were predominantly unchanged in HPV+ HNSCCs compared to their HPV- counterparts, in which AIM2 was predominantly upregulated (10% vs. 50% of patients). In HPV- tumors, upregulation of TP53, NOTCH1, PD-L1, and IFI16 correlated with lower occurrence of nodal metastases. On the other hand, the expression of APOBEC family members did not correlate with clinical characteristics. Regarding survival, patients with upregulated A3F gene expression had a worse prognosis, while patients without changes in A3H expression had a lower survival rate. In conclusion, our findings indicate that the innate immune sensors IFI16 and AIM2 and some APOBEC family members could be potentially used as biomarkers for disease outcome in HNSCC patients regardless of HPV presence.


Asunto(s)
Proteínas de Unión al ADN/genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/virología , Proteínas Nucleares/genética , Papillomaviridae/aislamiento & purificación , Fosfoproteínas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Desaminasas APOBEC , Adulto , Anciano , Biomarcadores de Tumor/genética , Estudios de Cohortes , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN Viral/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Neoplasias de Cabeza y Cuello/patología , Humanos , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Proteínas Nucleares/metabolismo , Papillomaviridae/genética , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Fosfoproteínas/metabolismo , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Análisis de Supervivencia
13.
J Immunol ; 197(10): 4066-4078, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27733551

RESUMEN

Elimination of virus-infected cells by cytotoxic lymphocytes is triggered by activating receptors, among which NKG2D and DNAM-1/CD226 play an important role. Their ligands, that is, MHC class I-related chain (MIC) A/B and UL16-binding proteins (ULBP)1-6 (NKG2D ligand), Nectin-2/CD112, and poliovirus receptor (PVR)/CD155 (DNAM-1 ligand), are often induced on virus-infected cells, although some viruses, including human CMV (HCMV), can block their expression. In this study, we report that infection of different cell types with laboratory or low-passage HCMV strains upregulated MICA, ULBP3, and PVR, with NKG2D and DNAM-1 playing a role in NK cell-mediated lysis of infected cells. Inhibition of viral DNA replication with phosphonoformic acid did not prevent ligand upregulation, thus indicating that early phases of HCMV infection are involved in ligand increase. Indeed, the major immediate early (IE) proteins IE1 and IE2 stimulated the expression of MICA and PVR, but not ULBP3. IE2 directly activated MICA promoter via its binding to an IE2-responsive element that we identified within the promoter and that is conserved among different alleles of MICA. Both IE proteins were instead required for PVR upregulation via a mechanism independent of IE DNA binding activity. Finally, inhibiting IE protein expression during HCMV infection confirmed their involvement in ligand increase. We also investigated the contribution of the DNA damage response, a pathway activated by HCMV and implicated in ligand regulation. However, silencing of ataxia telangiectasia mutated, ataxia telangiectasia and Rad3-related protein, and DNA-dependent protein kinase did not influence ligand expression. Overall, these data reveal that MICA and PVR are directly regulated by HCMV IE proteins, and this may be crucial for the onset of an early host antiviral response.


Asunto(s)
Regulación de la Expresión Génica , Antígenos de Histocompatibilidad Clase I/genética , Proteínas Inmediatas-Precoces/metabolismo , Receptores Virales/genética , Transactivadores/metabolismo , Antígenos de Diferenciación de Linfocitos T/genética , Línea Celular , Citotoxicidad Inmunológica , Replicación del ADN/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/virología , Foscarnet/farmacología , Proteínas Ligadas a GPI/genética , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Proteínas Inmediatas-Precoces/farmacología , Péptidos y Proteínas de Señalización Intercelular/genética , Células Asesinas Naturales/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Transactivadores/farmacología , Activación Transcripcional , Regulación hacia Arriba , Proteínas Virales/genética , Replicación Viral/efectos de los fármacos
14.
New Microbiol ; 41(2): 87-94, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29384558

RESUMEN

The germline encoded proteins serving as "pattern recognition receptors" (PRRs) constitute the earliest step in the innate immune response by recognizing the "pathogen-associated molecular patterns" (PAMPs) that comprise microbe nucleic acids and proteins usually absent from healthy hosts. Upon detection of exogenous nucleic acid two different innate immunity signaling cascades are activated. The first culminates in the production of chemokines, cytokines, and type I interferons (IFN-I), while the second leads to inflammasome complex formation. Human cytomegalovirus (HCMV), a member of the b-herpesvirus subfamily, is a widespread pathogen that infects the vast majority of the world's population. The virion has an icosahedral capsid that contains a linear dsDNA genome of approximately 240 kb, surrounded by an outer lipid envelope and a proteinaceous tegument containing several viral proteins. Despite the numerous and multifaceted antiviral effects of IFNs and cytokines, HCMV is able to invade, multiply, and establish persistent infection in healthy human hosts. To achieve this goal the virus has developed different strategies to block the IFN-I response and to alter the physiological outcomes of the IFN-inducible genes. This article focuses on HCMV tegument pp65 by reviewing its mechanisms of action in favoring virus evasion from the host innate immune response.


Asunto(s)
Citomegalovirus/fisiología , Evasión Inmune/fisiología , Inmunidad Innata/fisiología , Fosfoproteínas/metabolismo , Proteínas de la Matriz Viral/metabolismo , Citomegalovirus/genética , Regulación Viral de la Expresión Génica , Humanos , Fosfoproteínas/genética , Proteínas de la Matriz Viral/genética
15.
J Virol ; 90(18): 8238-50, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27384655

RESUMEN

UNLABELLED: A key player in the intrinsic resistance against human cytomegalovirus (HCMV) is the interferon-γ-inducible protein 16 (IFI16), which behaves as a viral DNA sensor in the first hours postinfection and as a repressor of viral gene transcription in the later stages. Previous studies on HCMV replication demonstrated that IFI16 binds to the viral protein kinase pUL97, undergoes phosphorylation, and relocalizes to the cytoplasm of infected cells. In this study, we demonstrate that the tegument protein pp65 (pUL83) recruits IFI16 to the promoter of the UL54 gene and downregulates viral replication, as shown by use of the HCMV mutant v65Stop, which lacks pp65 expression. Interestingly, at late time points of HCMV infection, IFI16 is stabilized by its interaction with pp65, which stood in contrast to IFI16 degradation, observed in herpes simplex virus 1 (HSV-1)-infected cells. Moreover, we found that its translocation to the cytoplasm, in addition to pUL97, strictly depends on pp65, as demonstrated with the HCMV mutant RV-VM1, which expresses a form of pp65 unable to translocate into the cytoplasm. Thus, these data reveal a dual role for pp65: during early infection, it modulates IFI16 activity at the promoter of immediate-early and early genes; subsequently, it delocalizes IFI16 from the nucleus into the cytoplasm, thereby stabilizing and protecting it from degradation. Overall, these data identify a novel activity of the pp65/IFI16 interactome involved in the regulation of UL54 gene expression and IFI16 stability during early and late phases of HCMV replication. IMPORTANCE: The DNA sensor IFI16, a member of the PYHIN proteins, restricts HCMV replication by impairing viral DNA synthesis. Using a mutant virus lacking the tegument protein pp65 (v65Stop), we demonstrate that pp65 recruits IFI16 to the early UL54 gene promoter. As a putative counteraction to its restriction activity, pp65 supports the nucleocytoplasmic export of IFI16, which was demonstrated with the viral mutant RV-VM1 expressing a nuclearly retained pp65. These data reveal a dual role of pp65 in IFI16 regulation: in the early phase of HCMV infection, it contributes to viral evasion from IFI16 restriction activity, while at later time points, it promotes the nuclear delocalization of IFI16, thereby stabilizing and protecting it from degradation. In the present work, we further clarify the mechanisms HCMV relies on to overcome intracellular innate immune restriction and provide new insights into the relevance of DNA-sensing restriction factor IFI16 during HCMV infection.


Asunto(s)
Citomegalovirus/inmunología , Citomegalovirus/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , Interacciones Huésped-Patógeno , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Células Cultivadas , ADN Viral/metabolismo , Humanos , Proteínas Nucleares/química , Fosfoproteínas/química , Regiones Promotoras Genéticas , Unión Proteica , Estabilidad Proteica , Proteínas de la Matriz Viral/química
16.
J Virol ; 88(12): 6970-82, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24696486

RESUMEN

UNLABELLED: Intrinsic immune mechanisms mediated by constitutively expressed proteins termed "restriction factors" provide frontline antiviral defense. We recently demonstrated that the DNA sensor IFI16 restricts human cytomegalovirus (HCMV) replication by downregulating viral early and late but not immediate-early mRNAs and their protein expression. We show here that at an early time point during the in vitro infection of low-passage-number human embryonic lung fibroblasts, IFI16 binds to HCMV DNA. However, during a later phase following infection, IFI16 is mislocalized to the cytoplasmic virus assembly complex (AC), where it colocalizes with viral structural proteins. Indeed, upon its binding to pUL97, IFI16 undergoes phosphorylation and relocalizes to the cytoplasm of HCMV-infected cells. ESCRT (endosomal sorting complex required for transport) machinery regulates the translocation of IFI16 into the virus AC by sorting and trafficking IFI16 into multivesicular bodies (MVB), as demonstrated by the interaction of IFI16 with two MVB markers: Vps4 and TGN46. Finally, IFI16 becomes incorporated into the newly assembled virions as demonstrated by Western blotting of purified virions and electron microscopy. Together, these results suggest that HCMV has evolved mechanisms to mislocalize and hijack IFI16, trapping it within mature virions. However, the significance of this IFI16 trapping following nuclear mislocalization remains to be established. IMPORTANCE: Intracellular viral DNA sensors and restriction factors are critical components of host defense, which alarm and sensitize immune system against intruding pathogens. We have recently demonstrated that the DNA sensor IFI16 restricts human cytomegalovirus (HCMV) replication by downregulating viral early and late but not immediate-early mRNAs and their protein expression. However, viruses are known to evolve numerous strategies to cope and counteract such restriction factors and neutralize the first line of host defense mechanisms. Our findings describe that during early stages of infection, IFI16 successfully recognizes HCMV DNA. However, in late stages HCMV mislocalizes IFI16 into the cytoplasmic viral assembly complex and finally entraps the protein into mature virions. We clarify here the mechanisms HCMV relies to overcome intracellular viral restriction, which provides new insights about the relevance of DNA sensors during HCMV infection.


Asunto(s)
Núcleo Celular/metabolismo , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/virología , Citomegalovirus/fisiología , Citoplasma/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Virión/fisiología , Liberación del Virus , Núcleo Celular/genética , Citomegalovirus/genética , Infecciones por Citomegalovirus/genética , Citoplasma/virología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Interacciones Huésped-Patógeno , Humanos , Proteínas Nucleares/genética , Fosfoproteínas/genética , Transporte de Proteínas , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Virión/genética , Replicación Viral
17.
New Microbiol ; 38(1): 5-20, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25742143

RESUMEN

IFI16, a member of the IFN-inducible PYHIN-200 gene family, displays multifaceted activity due to its ability to bind to various target proteins and, in turn, modulate a variety cell functions including proliferation, differentiation, apoptosis/pyroptosis, senescence, and in? ammation. The last few year have seen major advances in our knowledge of IFI16 antiviral activity and its role in the immune response. Indeed, a wealth of evidence now supports a key role of IFI16 in the activation of innate immunity and viral restriction against Herpesviruses and Lentiviruses, such that the definition of IFI16 as a "restriction factor" is now widely accepted. However, most viruses have developed their own unique strategy to antagonize IFI16, leading to a modification or disruption of its function. This review summarizes our current understanding of how viral replication is sensed and then inhibited by IFI16 protein and the viral strategies employed to defeat this host defense mechanism. We will focus mainly on Herpesviruses, although recent discoveries on the role of IFI16 in lentiviral infection will also be considered.


Asunto(s)
ADN Viral/inmunología , Infecciones por Herpesviridae/inmunología , Herpesviridae/inmunología , Proteínas Nucleares/inmunología , Fosfoproteínas/inmunología , Animales , ADN Viral/genética , Herpesviridae/genética , Herpesviridae/fisiología , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/virología , Humanos , Inmunidad Innata , Proteínas Nucleares/genética , Fosfoproteínas/genética
18.
PLoS Pathog ; 8(1): e1002498, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22291595

RESUMEN

Human interferon (IFN)-inducible IFI16 protein, an innate immune sensor of intracellular DNA, modulates various cell functions, however, its role in regulating virus growth remains unresolved. Here, we adopt two approaches to investigate whether IFI16 exerts pro- and/or anti-viral actions. First, the IFI16 gene was silenced using specific small interfering RNAs (siRNA) in human embryo lung fibroblasts (HELF) and replication of DNA and RNA viruses evaluated. IFI16-knockdown resulted in enhanced replication of Herpesviruses, in particular, Human Cytomegalovirus (HCMV). Consistent with this, HELF transduction with a dominant negative form of IFI16 lacking the PYRIN domain (PYD) enhanced the replication of HCMV. Second, HCMV replication was compared between HELFs overexpressing either the IFI16 gene or the LacZ gene. IFI16 overexpression decreased both virus yield and viral DNA copy number. Early and late, but not immediate-early, mRNAs and proteins were strongly down-regulated, thus IFI16 may exert its antiviral effect by impairing viral DNA synthesis. Constructs with the luciferase reporter gene driven by deleted or site-specific mutated forms of the HCMV DNA polymerase (UL54) promoter demonstrated that the inverted repeat element 1 (IR-1), located between -54 and -43 relative to the transcription start site, is the target of IFI16 suppression. Indeed, electrophoretic mobility shift assays and chromatin immunoprecipitation demonstrated that suppression of the UL54 promoter is mediated by IFI16-induced blocking of Sp1-like factors. Consistent with these results, deletion of the putative Sp1 responsive element from the HCMV UL44 promoter also relieved IFI16 suppression. Together, these data implicate IFI16 as a novel restriction factor against HCMV replication and provide new insight into the physiological functions of the IFN-inducible gene IFI16 as a viral restriction factor.


Asunto(s)
Infecciones por Citomegalovirus/metabolismo , Citomegalovirus/fisiología , ADN Viral/biosíntesis , ADN Polimerasa Dirigida por ADN/metabolismo , Inmunidad Innata/fisiología , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral/fisiología , Animales , Chlorocebus aethiops , Infecciones por Citomegalovirus/genética , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/patología , ADN Viral/genética , ADN Viral/inmunología , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/inmunología , Embrión de Mamíferos/inmunología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Embrión de Mamíferos/virología , Fibroblastos/inmunología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibroblastos/virología , Células HEK293 , Humanos , Ratones , Proteínas Nucleares/genética , Fosfoproteínas/genética , Elementos de Respuesta/fisiología , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/inmunología , Factor de Transcripción Sp1/metabolismo , Células Vero , Proteínas Virales/genética , Proteínas Virales/inmunología
19.
New Microbiol ; 37(2): 129-43, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24858640

RESUMEN

The aim of this study was to analyze protein and gene expression of HER2 in 224 head and neck precancerous and malignant lesions by immunohistochemistry and FISH analysis. In parallel, expression of pStat3, Sox2, IFI16 and p16, Ki67 was evaluated. Immunohistochemical analysis was assessed on formalin-fixed paraffin-embedded (FFPE) tissue specimens. A combined method for HPV detection consisting of p16 immunostaining and two PCR probes was applied. HER2 gene status was evaluated by FISH analysis. HPV DNA was detected in 24% of cases with predominant HPV16 genotype. HPV-positive lesions had higher HER2, pStat3 and within carcinoma group, and higher IFI16 expression compared to the HPV-negative group (Fig. 1A-B-C). A strong positive correlation between Sox2 and proliferative activity was observed, whereas IFI16 expression displayed a negative relationship with Sox2 and Ki67 activity. The most striking result was higher pStat3 expression in HPV-positive lesions and its strong positive correlation with IFI16 expression. The presence of HPV may induce upregulation of HER2/neu, pStat3 and IFI16. High levels and a strong positive correlation between pStat3 and IFI16 suggest their synergistic pro-apoptotic effects in HPV-positive lesions.


Asunto(s)
Proteínas de Ciclo Celular/genética , Neoplasias de Cabeza y Cuello/genética , Papillomavirus Humano 16/fisiología , Proteínas Nucleares/genética , Infecciones por Papillomavirus/genética , Fosfoproteínas/genética , Receptor ErbB-2/genética , Factores de Transcripción SOXB1/genética , Factor de Transcripción STAT3/genética , Adulto , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/fisiopatología , Neoplasias de Cabeza y Cuello/virología , Papillomavirus Humano 16/genética , Humanos , Masculino , Persona de Mediana Edad , Proteínas Nucleares/metabolismo , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/fisiopatología , Infecciones por Papillomavirus/virología , Fosfoproteínas/metabolismo , Receptor ErbB-2/metabolismo , Factores de Transcripción SOXB1/metabolismo , Factor de Transcripción STAT3/metabolismo , Regulación hacia Arriba
20.
Microorganisms ; 12(2)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38399777

RESUMEN

The rise of drug resistance to antivirals poses a significant global concern for public health; therefore, there is a pressing need to identify novel compounds that can effectively counteract strains resistant to current antiviral treatments. In light of this, researchers have been exploring new approaches, including the investigation of natural compounds as alternative sources for developing potent antiviral therapies. Thus, this work aimed to evaluate the antiviral properties of the organic-soluble fraction of a root exudate derived from the tomato plant Solanum lycopersicum in the context of herpesvirus infections. Our findings demonstrated that a root exudate from Solanum lycopersicum exhibits remarkable efficacy against prominent members of the family Herpesviridae, specifically herpes simplex virus type 1 (HSV-1) (EC50 25.57 µg/mL, SI > 15.64) and human cytomegalovirus (HCMV) (EC50 9.17 µg/mL, SI 32.28) by inhibiting a molecular event during the herpesvirus replication phase. Moreover, the phytochemical fingerprint of the Solanum lycopersicum root exudate was characterized through mass spectrometry. Overall, these data have unveiled a novel natural product with antiherpetic activity, presenting a promising and valuable alternative to existing drugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA