Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 577(7789): E2, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31844284

RESUMEN

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 581(7809): 391-395, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32461651

RESUMEN

More than three-quarters of the baryonic content of the Universe resides in a highly diffuse state that is difficult to detect, with only a small fraction directly observed in galaxies and galaxy clusters1,2. Censuses of the nearby Universe have used absorption line spectroscopy3,4 to observe the 'invisible' baryons, but these measurements rely on large and uncertain corrections and are insensitive to most of the Universe's volume and probably most of its mass. In particular, quasar spectroscopy is sensitive either to the very small amounts of hydrogen that exist in the atomic state, or to highly ionized and enriched gas4-6 in denser regions near galaxies7. Other techniques to observe these invisible baryons also have limitations; Sunyaev-Zel'dovich analyses8,9 can provide evidence from gas within filamentary structures, and studies of X-ray emission are most sensitive to gas near galaxy clusters9,10. Here we report a measurement of the baryon content of the Universe using the dispersion of a sample of localized fast radio bursts; this technique determines the electron column density along each line of sight and accounts for every ionized baryon11-13. We augment the sample of reported arcsecond-localized14-18 fast radio bursts with four new localizations in host galaxies that have measured redshifts of 0.291, 0.118, 0.378 and 0.522. This completes a sample sufficiently large to account for dispersion variations along the lines of sight and in the host-galaxy environments11, and we derive a cosmic baryon density of [Formula: see text] (95 per cent confidence; h70 = H0/(70 km s-1 Mpc-1) and H0 is Hubble's constant). This independent measurement is consistent with values derived from the cosmic microwave background and from Big Bang nucleosynthesis19,20.

3.
Nature ; 561(7723): 355-359, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30185904

RESUMEN

The binary neutron-star merger GW1708171 was accompanied by radiation across the electromagnetic spectrum2 and localized2 to the galaxy NGC 4993 at a distance3 of about 41 megaparsecs from Earth. The radio and X-ray afterglows of GW170817 exhibited delayed onset4-7, a gradual increase8 in the emission with time (proportional to t0.8) to a peak about 150 days after the merger event9, followed by a relatively rapid decline9,10. So far, various models have been proposed to explain the afterglow emission, including a choked-jet cocoon4,8,11-13 and a successful-jet cocoon4,8,11-18 (also called a structured jet). However, the observational data have remained inconclusive10,15,19,20 as to whether GW170817 launched a successful relativistic jet. Here we report radio observations using very long-baseline interferometry. We find that the compact radio source associated with GW170817 exhibits superluminal apparent motion between 75 days and 230 days after the merger event. This measurement breaks the degeneracy between the choked- and successful-jet cocoon models and indicates that, although the early-time radio emission was powered by a wide-angle outflow8 (a cocoon), the late-time emission was most probably dominated by an energetic and narrowly collimated jet (with an opening angle of less than five degrees) and observed from a viewing angle of about 20 degrees. The imaging of a collimated relativistic outflow emerging from GW170817 adds substantial weight to the evidence linking binary neutron-star mergers and short γ-ray bursts.

4.
Nature ; 554(7691): 207-210, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29261643

RESUMEN

GW170817 was the first gravitational-wave detection of a binary neutron-star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 megaparsecs. It has been proposed that the observed γ-ray, X-ray and radio emission is due to an ultra-relativistic jet being launched during the merger (and successfully breaking out of the surrounding material), directed away from our line of sight (off-axis). The presence of such a jet is predicted from models that posit neutron-star mergers as the drivers of short hard-γ-ray bursts. Here we report that the radio light curve of GW170817 has no direct signature of the afterglow of an off-axis jet. Although we cannot completely rule out the existence of a jet directed away from the line of sight, the observed γ-ray emission could not have originated from such a jet. Instead, the radio data require the existence of a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high-velocity tail of the neutron-rich material that was ejected dynamically during the merger, or a cocoon of material that breaks out when a jet launched during the merger transfers its energy to the dynamical ejecta. Because the cocoon model explains the radio light curve of GW170817, as well as the γ-ray and X-ray emission (and possibly also the ultraviolet and optical emission), it is the model that is most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron-star mergers, giving rise to a hitherto unidentified population of radio, ultraviolet, X-ray and γ-ray transients in the local Universe.

5.
Nature ; 531(7592): 70-3, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26935696

RESUMEN

Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 10(17)-10(18) electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate air showers--cascades of secondary particles in the atmosphere-and their masses can be inferred from measurements of the atmospheric depth of the shower maximum (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground. Current measurements have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 10(17)-10(17.5) electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 10(17.5) electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 10(17)-10(17.5) electronvolt range.

6.
Phys Rev Lett ; 125(7): 073201, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857581

RESUMEN

Nitric oxide (NO) molecules initially traveling at 795 m/s in pulsed supersonic beams have been photoexcited to long-lived hydrogenic Rydberg-Stark states, decelerated and electrostatically trapped in a cryogenically cooled, chip-based transmission-line Rydberg-Stark decelerator. The decelerated and trapped molecules were detected in situ by pulsed electric field ionization. The operation of the decelerator was validated by comparison of the experimental data with the results of numerical calculations of particle trajectories. Studies of the decay of the trapped molecules on timescales up to 1 ms provide new insights into the lifetimes of, and effects of blackbody radiation on, Rydberg states of NO.

7.
Nature ; 505(7484): 520-4, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24390352

RESUMEN

Gravitationally bound three-body systems have been studied for hundreds of years and are common in our Galaxy. They show complex orbital interactions, which can constrain the compositions, masses and interior structures of the bodies and test theories of gravity, if sufficiently precise measurements are available. A triple system containing a radio pulsar could provide such measurements, but the only previously known such system, PSR B1620-26 (refs 7, 8; with a millisecond pulsar, a white dwarf, and a planetary-mass object in an orbit of several decades), shows only weak interactions. Here we report precision timing and multiwavelength observations of PSR J0337+1715, a millisecond pulsar in a hierarchical triple system with two other stars. Strong gravitational interactions are apparent and provide the masses of the pulsar M[Symbol: see text](1.4378(13), where M[Symbol: see text]is the solar mass and the parentheses contain the uncertainty in the final decimal places) and the two white dwarf companions (0.19751(15)M[Symbol: see text] and 0.4101(3))M[Symbol: see text], as well as the inclinations of the orbits (both about 39.2°). The unexpectedly coplanar and nearly circular orbits indicate a complex and exotic evolutionary past that differs from those of known stellar systems. The gravitational field of the outer white dwarf strongly accelerates the inner binary containing the neutron star, and the system will thus provide an ideal laboratory in which to test the strong equivalence principle of general relativity.

8.
J Chem Phys ; 152(14): 144305, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32295365

RESUMEN

High Rydberg states of nitric oxide (NO) with principal quantum numbers between 40 and 100 and lifetimes in excess of 10 µs have been prepared by resonance enhanced two-color two-photon laser excitation from the X 2Π1/2 ground state through the A 2Σ+ intermediate state. Molecules in these long-lived Rydberg states were detected and characterized 126 µs after laser photoexcitation by state-selective pulsed electric field ionization. The laser excitation and electric field ionization data were combined to construct two-dimensional spectral maps. These maps were used to identify the rotational states of the NO+ ion core to which the observed series of long-lived hydrogenic Rydberg states converge. The results presented pave the way for Rydberg-Stark deceleration and electrostatic trapping experiments with NO, which are expected to shed further light on the decay dynamics of these long-lived excited states, and are of interest for studies of ion-molecule reactions at low temperatures.

9.
Phys Rev Lett ; 122(5): 053203, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30822000

RESUMEN

Helium atoms in high- and low-field-seeking Rydberg states with linear and quadratic Stark shifts have been confined in two dimensions and guided over a distance of 150 mm using time-varying inhomogeneous electric fields. This was achieved with an electrode structure composed of four parallel cylindrical rods to which voltages were applied to form oscillating and rotating saddle-point fields. These two modes of operation result in time-averaged pseudopotentials that confine samples in high- and low-field-seeking states about the axis of the device. The experimental data have been compared to the results of numerical particle trajectory calculations that include effects of blackbody radiation and electric field ionization. The results highlight important contributions from single-photon blackbody-induced transitions that cause large changes in the principal quantum number of the Rydberg atoms.

10.
Nature ; 501(7467): 391-4, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-23945588

RESUMEN

Earth's nearest candidate supermassive black hole lies at the centre of the Milky Way. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to synchrotron emission such as that previously observed. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre and show that the pulsar's unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission--from radio to X-ray wavelengths--from the black hole.

11.
Nature ; 483(7390): 439-43, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22398451

RESUMEN

The hydrogen atom is one of the most important and influential model systems in modern physics. Attempts to understand its spectrum are inextricably linked to the early history and development of quantum mechanics. The hydrogen atom's stature lies in its simplicity and in the accuracy with which its spectrum can be measured and compared to theory. Today its spectrum remains a valuable tool for determining the values of fundamental constants and for challenging the limits of modern physics, including the validity of quantum electrodynamics and--by comparison with measurements on its antimatter counterpart, antihydrogen--the validity of CPT (charge conjugation, parity and time reversal) symmetry. Here we report spectroscopy of a pure antimatter atom, demonstrating resonant quantum transitions in antihydrogen. We have manipulated the internal spin state of antihydrogen atoms so as to induce magnetic resonance transitions between hyperfine levels of the positronic ground state. We used resonant microwave radiation to flip the spin of the positron in antihydrogen atoms that were magnetically trapped in the ALPHA apparatus. The spin flip causes trapped anti-atoms to be ejected from the trap. We look for evidence of resonant interaction by comparing the survival rate of trapped atoms irradiated with microwaves on-resonance to that of atoms subjected to microwaves that are off-resonance. In one variant of the experiment, we detect 23 atoms that survive in 110 trapping attempts with microwaves off-resonance (0.21 per attempt), and only two atoms that survive in 103 attempts with microwaves on-resonance (0.02 per attempt). We also describe the direct detection of the annihilation of antihydrogen atoms ejected by the microwaves.

13.
Phys Rev Lett ; 117(7): 073202, 2016 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-27563960

RESUMEN

We report experiments in which positronium (Ps) atoms were guided using inhomogeneous electric fields. Ps atoms in Rydberg-Stark states with principal quantum number n=10 and electric dipole moments up to 610 D were prepared via two-color two-photon optical excitation in the presence of a 670 V cm^{-1} electric field. The Ps atoms were created at the entrance of a 0.4 m long electrostatic quadrupole guide, and were detected at the end of the guide via annihilation gamma radiation. When the lasers were tuned to excite low-field-seeking Stark states, a fivefold increase in the number of atoms reaching the end of the guide was observed, whereas no signal was detected when high-field-seeking states were produced. The data are consistent with the calculated geometrical guide acceptance.

14.
Nature ; 468(7324): 673-6, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21085118

RESUMEN

Antimatter was first predicted in 1931, by Dirac. Work with high-energy antiparticles is now commonplace, and anti-electrons are used regularly in the medical technique of positron emission tomography scanning. Antihydrogen, the bound state of an antiproton and a positron, has been produced at low energies at CERN (the European Organization for Nuclear Research) since 2002. Antihydrogen is of interest for use in a precision test of nature's fundamental symmetries. The charge conjugation/parity/time reversal (CPT) theorem, a crucial part of the foundation of the standard model of elementary particles and interactions, demands that hydrogen and antihydrogen have the same spectrum. Given the current experimental precision of measurements on the hydrogen atom (about two parts in 10(14) for the frequency of the 1s-to-2s transition), subjecting antihydrogen to rigorous spectroscopic examination would constitute a compelling, model-independent test of CPT. Antihydrogen could also be used to study the gravitational behaviour of antimatter. However, so far experiments have produced antihydrogen that is not confined, precluding detailed study of its structure. Here we demonstrate trapping of antihydrogen atoms. From the interaction of about 10(7) antiprotons and 7 × 10(8) positrons, we observed 38 annihilation events consistent with the controlled release of trapped antihydrogen from our magnetic trap; the measured background is 1.4 ± 1.4 events. This result opens the door to precision measurements on anti-atoms, which can soon be subjected to the same techniques as developed for hydrogen.

15.
Phys Rev Lett ; 114(17): 173001, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25978227

RESUMEN

Rydberg positronium (Ps) atoms have been prepared in selected Stark states via two-step (1s→2p→nd/ns) optical excitation. Two methods have been used to achieve Stark-state selection: a field ionization filter that transmits the outermost states with positive Stark shifts, and state-selected photoexcitation in a strong electric field. The former is demonstrated for n=17 and 18 while the latter is performed for n=11 in a homogeneous electric field of 1.9 kV/cm. The observed spectral intensities and their dependence on the polarization of the laser radiation are in agreement with calculations that include the perturbations of the intermediate n=2 manifold. Our results pave the way for the generation of Rydberg Ps atoms with large electric dipole moments that are required for the realization of schemes to control their motion using inhomogeneous electric fields, an essential feature of some proposed Ps free-fall measurements requiring focused beams of long-lived atoms.

16.
Phys Rev Lett ; 115(18): 183401, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26565466

RESUMEN

We show that the annihilation dynamics of excited positronium (Ps) atoms can be controlled using parallel electric and magnetic fields. To achieve this, Ps atoms were optically excited to n=2 sublevels in fields that were adjusted to control the amount of short-lived and long-lived character of the resulting mixed states. Inclusion of the former offers a practical approach to detection via annihilation radiation, whereas the increased lifetimes due to the latter can be exploited to optimize resonance-enhanced two-photon excitation processes (e.g., 1^{3}S→2^{3}P→nS/nD), either by minimizing losses through intermediate state decay, or by making it possible to separate the excitation laser pulses in time. In addition, photoexcitation of mixed states with a 2^{3}S_{1} component represents an efficient route to producing long-lived pure 2^{3}S_{1} atoms via single-photon excitation.

17.
Phys Rev E ; 110(2): L023201, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39295038

RESUMEN

We demonstrate the efficient injection of a pulsed positron beam into a magnetic dipole trap and investigate the ensuing particle dynamics in the inhomogeneous electric and magnetic fields. Bunches of ∼10^{5}e^{+} were transferred from a buffer-gas trap into the field of a permanent magnet using a lossless E×B drift technique. The Δt≈0.2µs pulses were short compared to the toroidal rotation period, τ_{d}≈16µs, and e^{+} confinement time, τ_{c}≈0.6 s. The redistribution dynamics were studied by measuring the delayed γ-ray emission as the trap was emptied. This work extends the record for the number of low-energy positrons held in a dipole trap by two orders of magnitude and represents a significant advance toward the confinement of an electron-positron pair plasma.

18.
Science ; 382(6668): 294-299, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37856596

RESUMEN

Fast radio bursts (FRBs) are millisecond-duration pulses of radio emission originating from extragalactic distances. Radio dispersion is imparted on each burst by intervening plasma, mostly located in the intergalactic medium. In this work, we observe the burst FRB 20220610A and localize it to a morphologically complex host galaxy system at redshift 1.016 ± 0.002. The burst redshift and dispersion measure are consistent with passage through a substantial column of plasma in the intergalactic medium and extend the relationship between those quantities measured at lower redshift. The burst shows evidence for passage through additional turbulent magnetized plasma, potentially associated with the host galaxy. We use the burst energy of 2 × 1042 erg to revise the empirical maximum energy of an FRB.

19.
Mater Today Chem ; 30: 101597, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37284350

RESUMEN

SARS-CoV-2 rapid spread required urgent, accurate, and prompt diagnosis to control the virus dissemination and pandemic management. Several sensors were developed using different biorecognition elements to obtain high specificity and sensitivity. However, the task to achieve these parameters in combination with fast detection, simplicity, and portability to identify the biorecognition element even in low concentration remains a challenge. Therefore, we developed an electrochemical biosensor based on polypyrrole nanotubes coupled via Ni(OH)2 ligation to an engineered antigen-binding fragment of heavy chain-only antibodies (VHH) termed Sb#15. Herein we report Sb#15-His6 expression, purification, and characterization of its interaction with the receptor-binding domain (RBD) of SARS-CoV-2 in addition to the construction and validation of a biosensor. The recombinant Sb#15 is correctly folded and interacts with the RBD with a dissociation constant (KD) of 27.1 ± 6.4 nmol/L. The biosensing platform was developed using polypyrrole nanotubes and Ni(OH)2, which can properly orientate the immobilization of Sb#15-His6 at the electrode surface through His-tag interaction for the sensitive SARS-CoV-2 antigen detection. The quantification limit was determined as 0.01 pg/mL using recombinant RBD, which was expressively lower than commercial monoclonal antibodies. In pre-characterized saliva, both Omicron and Delta SARS-CoV-2 were accurately detected only in positive samples, meeting all the requirements recommended by the World Health Organization for in vitro diagnostics. A low sample volume of saliva is needed to perform the detection, providing results within 15 min without further sample preparations. In summary, a new perspective allying recombinant VHHs with biosensor development and real sample detection was explored, addressing the need for accurate, rapid, and sensitive biosensors.

20.
Mater Today Chem ; 24: 100817, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35155879

RESUMEN

The rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroconversion in humans is crucial for suitable infection control. In this sense, many studies have focused on increasing the sensibility, lowering the detection limits and minimizing false negative/positive results. Thus, biosensors based on nanoarchitectures of conducting polymers are promising alternatives to more traditional materials since they can hold improved surface area, higher electrical conductivity and electrochemical activity. In this work, we reported the analytical comparison of two different conducting polymers morphologies for the development of an impedimetric biosensor to monitor SARS-CoV-2 seroconversion in humans. Biosensors based on polypyrrole (PPy), synthesized in both globular and nanotubular (NT) morphology, and gold nanoparticles are reported, using a self-assembly monolayer of 3-mercaptopropionic acid and covalently linked SARS-CoV-2 Nucleocapsid protein. First, the novel hybrid materials were characterized by electron microscopy and electrochemical measurements, and the biosensor step-by-step construction was characterized by electrochemical and spectroscopic techniques. As a proof of concept, the biosensor was used for the impedimetric detection of anti-SARS-CoV-2 Nucleocapsid protein monoclonal antibodies. The results showed a linear response for different antibody concentrations, good sensibility and possibility to quantify 7.442 and 0.4 ng/mL of monoclonal antibody for PPy in the globular and NT morphology, respectively. The PPy-NTs biosensor was able to discriminate serum obtained from COVID-19 positive versus negative clinical samples and is a promising tool for COVID-19 immunodiagnostic, which can contribute to further studies concerning rapid, efficient, and reliable detections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA