Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(3): 1935-1945, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38191290

RESUMEN

The reaction mechanism of CO2 electroreduction on oxide-derived copper has not yet been unraveled even though high C2+ Faradaic efficiencies are commonly observed on these surfaces. In this study, we aim to explore the effects of copper anodization on the adsorption of various CO2RR intermediates using in situ surface-enhanced infrared absorption spectroscopy (SEIRAS) on metallic and mildly anodized copper thin films. The in situ SEIRAS results show that the preoxidation process can significantly improve the overall CO2 reduction activity by (1) enhancing CO2 activation, (2) increasing CO uptake, and (3) promoting C-C coupling. First, the strong *COO- redshift indicates that the preoxidation process significantly enhances the first elementary step of CO2 adsorption and activation. The rapid uptake of adsorbed *COatop also illustrates how a high *CO coverage can be achieved in oxide-derived copper electrocatalysts. Finally, for the first time, we observed the formation of the *COCHO dimer on the anodized copper thin film. Using DFT calculations, we show how the presence of subsurface oxygen within the Cu lattice can improve the thermodynamics of C2 product formation via the coupling of adsorbed *CO and *CHO intermediates. This study advances our understanding of the role of surface and subsurface conditions in improving the catalytic reaction kinetics and product selectivity of CO2 reduction.

2.
Angew Chem Int Ed Engl ; : e202404676, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38880900

RESUMEN

Copper (Cu)-based catalysts have established their unique capability for yielding wide value-added products from CO2. Herein, we demonstrate that the pathways of the electrocatalytic CO2 reduction reaction (CO2RR) can be rationally altered toward C1 or C2+ products by simply optimizing the coordination of Cu with O-containing organic species (squaric acid (H2C4O4) and cyclohexanehexaone (C6O6)). It is revealed that the strength of Cu-O bonds can significantly affect the morphologies and electronic structures of derived Cu catalysts, resulting in the distinct behaviors during CO2RR. Specifically, the C6O6-Cu catalysts made up from organized nanodomains shows a dominant C1 pathway with a total Faradaic efficiency (FE) of 63.7 % at -0.6 V (versus reversible hydrogen electrode, RHE). In comparison, the C4O4-Cu with an about perfect crystalline structure results in uniformly dispersed Cu-atoms, showing a notable FE of 65.8 % for C2+ products with enhanced capability of C-C coupling. The latter system also shows stable operation over at least 10 h with a high current density of 205.1 mA cm-2 at -1.0 VRHE, i.e., is already at the boarder of practical relevance. This study sheds light on the rational design of Cu-based catalysts for directing the CO2RR reaction pathway.

3.
Angew Chem Int Ed Engl ; 62(49): e202313522, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37855722

RESUMEN

Electrochemical carbon dioxide reduction reaction (CO2 RR) to produce valuable chemicals is a promising pathway to alleviate the energy crisis and global warming issues. However, simultaneously achieving high Faradaic efficiency (FE) and current densities of CO2 RR in a wide potential range remains as a huge challenge for practical implements. Herein, we demonstrate that incorporating bismuth-based (BH) catalysts with L-histidine, a common amino acid molecule of proteins, is an effective strategy to overcome the inherent trade-off between the activity and selectivity. Benefiting from the significantly enhanced CO2 adsorption capability and promoted electron-rich nature by L-histidine integrity, the BH catalyst exhibits excellent FEformate in the unprecedented wide potential windows (>90 % within -0.1--1.8 V and >95 % within -0.2--1.6 V versus reversible hydrogen electrode, RHE). Excellent CO2 RR performance can still be achieved under the low-concentration CO2 feeding (e.g., 20 vol.%). Besides, an extremely low onset potential of -0.05 VRHE (close to the theoretical thermodynamic potential of -0.02 VRHE ) was detected by in situ ultraviolet-visible (UV-Vis) measurements, together with stable operation over 50 h with preserved FEformate of ≈95 % and high partial current density of 326.2 mA cm-2 at -1.0 VRHE .

4.
Adv Mater ; 33(50): e2005484, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33899277

RESUMEN

Electrochemical CO2 reduction has been recognized as a promising solution in tackling energy- and environment-related challenges of human society. In the past few years, the rapid development of advanced electrocatalysts has significantly improved the efficiency of this reaction and accelerated the practical applications of this technology. Herein, representative catalyst structures and composition engineering strategies in regulating the CO2 reduction selectivity and activity toward various products including carbon monoxide, formate, methane, methanol, ethylene, and ethanol are summarized. An overview of in situ/operando characterizations and advanced computational modeling in deepening the understanding of the reaction mechanisms and accelerating catalyst design are also provided. To conclude, future challenges and opportunities in this research field are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA