Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
mSphere ; 6(2)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731470

RESUMEN

Amoebiasis is a parasitic disease caused by Entamoeba histolytica infection and is a serious public health problem worldwide due to ill-prepared preventive measures as well as its high morbidity and mortality rates. Amoebiasis transmission is solely mediated by cysts. Cysts are produced by the differentiation of proliferative trophozoites in a process termed "encystation." Entamoeba encystation is a fundamental cell differentiation process and proceeds with substantial changes in cell metabolites, components, and morphology, which occur sequentially in an orchestrated manner. Lipids are plausibly among these metabolites that function as key factors for encystation. However, a comprehensive lipid analysis has not been reported, and the involved lipid metabolic pathways remain largely unknown. Here, we exploited the state-of-the-art untargeted lipidomics and characterized 339 molecules of 17 lipid subclasses. Of these, dihydroceramide (Cer-NDS) was found to be among the most induced lipid species during encystation. Notably, in encysting cells, amounts of Cer-NDS containing very long N-acyl chains (≥26 carbon) were more than 30-fold induced as the terminal product of a de novo metabolic pathway. We also identified three ceramide synthase genes responsible for producing the very-long-chain Cer-NDS molecules. These genes were upregulated during encystation. Furthermore, these ceramide species were shown to be indispensable for generating membrane impermeability, a prerequisite for becoming dormant cyst that shows resistance to environmental assault inside and outside the host for transmission. Hence, the lipid subclass of Cer-NDS plays a crucial role for Entamoeba cell differentiation and morphogenesis by alternating the membrane properties.IMPORTANCEEntamoeba is a protozoan parasite that thrives in its niche by alternating its two forms between a proliferative trophozoite and dormant cyst. Cysts are the only form able to transmit to a new host and are differentiated from trophozoites in a process termed "encystation." During Entamoeba encystation, cell metabolites, components, and morphology drastically change, which occur sequentially in an orchestrated manner. Lipids are plausibly among these metabolites. However, the involved lipid species and their metabolic pathways remain largely unknown. Here, we identified dihydroceramides (Cer-NDSs) containing very long N-acyl chains (C26 to C30) as a key metabolite for Entamoeba encystation by our state-of-the-art untargeted lipidomics. We also showed that these Cer-NDSs are critical to generate the membrane impermeability, a prerequisite for this parasite to show dormancy as a cyst that repels substances and prevents water loss. Hence, ceramide metabolism is essential for Entamoeba to maintain the parasitic lifestyle.


Asunto(s)
Ceramidas/biosíntesis , Entamoeba/metabolismo , Metabolismo de los Lípidos , Redes y Vías Metabólicas , Enquistamiento de Parásito/fisiología , Ceramidas/clasificación , Ceramidas/metabolismo , Lípidos/análisis , Lípidos/clasificación , Regulación hacia Arriba
3.
Malar J ; 9: 15, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-20074326

RESUMEN

BACKGROUND: Information related to malaria vectors is very limited in Bangladesh. In the changing environment and various Anopheles species may be incriminated and play role in the transmission cycle. This study was designed with an intention to identify anopheline species and possible malaria vectors in the border belt areas, where the malaria is endemic in Bangladesh. METHODS: Anopheles mosquitoes were collected from three border belt areas (Lengura, Deorgachh and Matiranga) during the peak malaria transmission season (May to August). Three different methods were used: human landing catches, resting collecting by mouth aspirator and CDC light traps. Enzyme-linked immunosorbent assay (ELISA) was done to detect Plasmodium falciparum, Plasmodium vivax-210 and Plasmodium vivax-247 circumsporozoite proteins (CSP) from the collected female species. RESULTS: A total of 634 female Anopheles mosquitoes belonging to 17 species were collected. Anopheles vagus (was the dominant species (18.6%) followed by Anopheles nigerrimus (14.5%) and Anopheles philippinensis (11.0%). Infection rate was found 2.6% within 622 mosquitoes tested with CSP-ELISA. Eight (1.3%) mosquitoes belonging to five species were positive for P. falciparum, seven (1.1%) mosquitoes belonging to five species were positive for P. vivax -210 and a single mosquito (0.2%) identified as Anopheles maculatus was positive for P. vivax-247. No mixed infection was found. Highest infection rate was found in Anopheles karwari (22.2%) followed by An. maculatus (14.3%) and Anopheles barbirostris (9.5%). Other positive species were An. nigerrimus (4.4%), An. vagus (4.3%), Anopheles subpictus (1.5%) and An. philippinensis (1.4%). Anopheles vagus and An. philippinensis were previously incriminated as malaria vector in Bangladesh. In contrast, An. karwari, An. maculatus, An. barbirostris, An. nigerrimus and An. subpictus had never previously been incriminated in Bangladesh. CONCLUSION: Findings of this study suggested that in absence of major malaria vectors there is a possibility that other Anopheles species may have been playing role in malaria transmission in Bangladesh. Therefore, further studies are required with the positive mosquito species found in this study to investigate their possible role in malaria transmission in Bangladesh.


Asunto(s)
Anopheles/parasitología , Insectos Vectores/parasitología , Malaria Falciparum/transmisión , Malaria Vivax/transmisión , Proteínas Protozoarias/análisis , Animales , Anopheles/clasificación , Bangladesh/epidemiología , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Vigilancia de la Población/métodos , Prevalencia
4.
iScience ; 23(9): 101544, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33083770

RESUMEN

Entamoeba histolytica, a protozoan parasite in the lumen of the human large intestine, occasionally spreads to the liver and induces amebic liver abscesses (ALAs). Upon infection with E. histolytica, high levels of type 2 cytokines are induced in the liver early after infection. However, the sources and functions of these initial type 2 cytokines in ALA formation remain unclear. In this study, we examined the roles of group 2 innate lymphoid cells (ILC2s) in ALA formation. Hepatic ILC2 numbers were significantly increased and they produced robust levels of IL-5. The in vivo transfer of ILC2s into Rag2-/-common γ chain (γc)-/- KO mice aggravated ALA formation accompanied by eosinophilia and neutrophilia. Furthermore, IL-33-deficient mice and IL-5-neutralized mice had less ALA formations. These results suggest that ILC2s contribute to exacerbating the pathogenesis of ALA by producing early type 2 cytokines and promoting the accumulation of eosinophils and neutrophils in the liver.

5.
PLoS Negl Trop Dis ; 14(9): e0008518, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32915790

RESUMEN

To eliminate schistosomiasis, appropriate diagnostic tests are required to monitor its prevalence and transmission, especially in the settings with low endemicity resulting from the consecutive mass drug administration. Antibodies that react with either crude soluble schistosome egg antigens or soluble worm antigen preparations have been used to monitor infection in low-prevalence regions. However, these detection methods cannot discriminate current and past infections and are cross-reactive with other parasites because both antigens contain numerous proteins and glycans from schistosomes, and standard preparations need maintenance of the life cycle of the schistosome. To evaluate the potential utility of nine recombinant Schistosoma mansoni proteins as single defined antigens for serological diagnosis, we monitored the kinetics of antibodies to each antigen during S. mansoni infection in mice before and after the treatment with praziquantel. C57BL/6 mice were infected with 50 cercariae. The levels of immunoglobulin G (IgG) raised against five recombinant antigens (RP26, sm31, sm32, GST, and LAP1) significantly increased as early as 2-4 weeks after infection and rapidly declined by 2 weeks after the treatment, whereas those raised against crude S. mansoni egg antigens or other antigens remained elevated long after the treatment. The IgG1 raised against RP26, sm31, and serpin decreased after the treatment with praziquantel, whereas the IgE raised against serpin declined strikingly after the treatment. This study clarifies the dynamics of the serological responses to recombinant S. mansoni proteins during infection and after the treatment with praziquantel and identifies several candidate antigens with potential utility in the monitoring and surveillance of schistosomiasis toward the elimination of schistosomiasis.


Asunto(s)
Praziquantel/farmacología , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/inmunología , Animales , Antihelmínticos/farmacología , Anticuerpos Antihelmínticos , Antígenos Helmínticos/inmunología , Femenino , Proteínas del Helminto/inmunología , Inmunoglobulina G , Ratones Endogámicos C57BL , Proteínas Recombinantes/inmunología , Schistosoma mansoni/efectos de los fármacos , Esquistosomiasis mansoni/diagnóstico , Esquistosomiasis mansoni/tratamiento farmacológico , Serpinas
6.
PLoS Negl Trop Dis ; 13(8): e0007633, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31425516

RESUMEN

BACKGROUND: Amoebiasis, caused by Entamoeba histolytica infection, is a global public health problem. However, available drugs to treat amoebiasis are currently limited, and no effective vaccine exists. Therefore, development of new preventive measures against amoebiasis is urgently needed. METHODOLOGY/PRINCIPAL FINDINGS: Here, to develop new drugs against amoebiasis, we focused on E. histolytica adenosine 5'-phosphosulfate kinase (EhAPSK), an essential enzyme in Entamoeba sulfolipid metabolism. Fatty alcohol disulfates and cholesteryl sulfate, sulfolipids synthesized in Entamoeba, play important roles in trophozoite proliferation and cyst formation. These processes are closely associated with clinical manifestation and severe pathogenesis of amoebiasis and with disease transmission, respectively. We validated a combination approach of in silico molecular docking analysis and an in vitro enzyme activity assay for large scale screening. Docking simulation ranked the binding free energy between a homology modeling structure of EhAPSK and 400 compounds. The 400 compounds were also screened by a 96-well plate-based in vitro APSK activity assay. Among fifteen compounds identified as EhAPSK inhibitors by the in vitro system, six were ranked by the in silico analysis as having high affinity toward EhAPSK. Furthermore, 2-(3-fluorophenoxy)-N-[4-(2-pyridyl)thiazol-2-yl]-acetamide, 3-phenyl-N-[4-(2-pyridyl)thiazol-2-yl]-imidazole-4-carboxamide, and auranofin, which were identified as EhAPSK inhibitors by both in silico and in vitro analyses, halted not only Entamoeba trophozoite proliferation but also cyst formation. These three compounds also dose-dependently impaired the synthesis of sulfolipids in E. histolytica. CONCLUSIONS/SIGNIFICANCE: Hence, the combined approach of in silico and in vitro-based EhAPSK analyses identified compounds that can be evaluated for their effects on Entamoeba. This can provide leads for the development of new anti-amoebic and amoebiasis transmission-blocking drugs. This strategy can also be applied to identify specific APSK inhibitors, which will benefit research into sulfur metabolism and the ubiquitous pathway terminally synthesizing essential sulfur-containing biomolecules.


Asunto(s)
Antiprotozoarios/aislamiento & purificación , Evaluación Preclínica de Medicamentos/métodos , Entamoeba histolytica/enzimología , Inhibidores Enzimáticos/aislamiento & purificación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Entamebiasis/tratamiento farmacológico , Humanos , Simulación del Acoplamiento Molecular , Pruebas de Sensibilidad Parasitaria , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores
7.
PLoS Negl Trop Dis ; 12(1): e0006197, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29373600

RESUMEN

Malaria and schistosomiasis are major parasitic diseases causing morbidity and mortality in the tropics. Epidemiological surveys have revealed coinfection rates of up to 30% among children in Sub-Saharan Africa. To investigate the impact of coinfection of these two parasites on disease epidemiology and pathology, we carried out coinfection studies using Plasmodium yoelii and Schistosoma mansoni in mice. Malaria parasite growth in the liver following sporozoite inoculation is significantly inhibited in mice infected with S. mansoni, so that when low numbers of sporozoites are inoculated, there is a large reduction in the percentage of mice that go on to develop blood stage malaria. Furthermore, gametocyte infectivity is much reduced in mice with S. mansoni infections. These results have profound implications for understanding the interactions between Plasmodium and Schistosoma species, and have implications for the control of malaria in schistosome endemic areas.


Asunto(s)
Coinfección/parasitología , Hígado/parasitología , Malaria/complicaciones , Interacciones Microbianas , Plasmodium yoelii/crecimiento & desarrollo , Schistosoma mansoni/crecimiento & desarrollo , Esquistosomiasis mansoni/complicaciones , África del Sur del Sahara , Animales , Culicidae/parasitología , Modelos Animales de Enfermedad , Malaria/parasitología , Ratones , Esquistosomiasis mansoni/parasitología
8.
Parasitol Int ; 66(6): 817-823, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28927906

RESUMEN

Amebiasis is an infectious disease caused by Entamoeba histolytica, an anaerobic protozoan parasite, and is a major public health problem worldwide, particularly in areas with inadequate sanitation and poor hygiene. Th1 responses, represented by interferon gamma (IFN-γ), play a protective role by clearing the amebae from the gut, whereas Th2 responses are responsible for chronic infection. Th17 responses preconditioned by vaccination or by modulating the intestinal microbiome protect mice from the settlement of E. histolytica. However, the role of interleukin-17A (IL-17A), which is upregulated during the natural course of intestinal amebiasis, has not been clarified. The aim of this study was to investigate the role of IL-17A during intestinal amebiasis in a mouse model. IL-17A knockout and wild-type CBA/J mice were challenged intracecally with 2×106E. histolytica trophozoites, and their infection, pathology, and immune responses were monitored. Neither the initial settlement of E. histolytica nor the inflammation of the cecum was affected by the absence of IL-17A for week 1, but the infection rate and parasite burden declined in a late stage of infection, accompanied by an increased IFN-γ/IL-4 ratio. Therefore, IL-17A contributes to the persistence of E. histolytica and modulates the immune response, including the IFN-γ/IL-4 ratio, which may be responsible for the reduction of the parasite burden in the IL-17A knockout mice during the chronic phase of intestinal amebiasis.


Asunto(s)
Disentería Amebiana/inmunología , Entamebiasis/inmunología , Interleucina-17/genética , Animales , Disentería Amebiana/parasitología , Entamoeba histolytica , Entamebiasis/parasitología , Interleucina-17/metabolismo , Ratones , Ratones Endogámicos CBA , Ratones Noqueados
9.
Parasitol Int ; 65(5 Pt B): 520-525, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27080249

RESUMEN

Entamoeba histolytica is the third leading parasitic cause of man mortality in the world. Infection occurs via ingestion of food or water contaminated with cysts of E. histolytica. Amoebae primarily colonize the intestine. The majority of amoebic infections are asymptomatic, but under some conditions, approximately 4-10% of infections progress to the invasive form of the disease. To better understand the pathogenesis of amoebiasis and the interaction between amoebae and their hosts, the development of suitable animal models is crucial. Pigs, gerbils, cats and mice are used as animal models for the study of amoebiasis in the laboratory. Among these, the most commonly used model is the mouse. In addition to intestinal amoebiasis, we developed a mouse model of liver abscess by inoculating amoeba through portal vein. However, the frequency of successful infection remains low, which is dependent on the conditions of amoebae in the laboratory. As the maintenance of virulent amoebae in the laboratory is unstable, it needs further refinement. This review summarizes mouse models of amoebiasis and the current state of laboratory culture method of amoebae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA