Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Cell Sci ; 131(8)2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29588396

RESUMEN

Abscission is the final step of cytokinesis whereby the intercellular bridge (ICB) linking the two daughter cells is cut. The ICB contains a structure called the midbody, required for the recruitment and organization of the abscission machinery. Final midbody severing is mediated by formation of secondary midbody ingression sites, where the ESCRT III component CHMP4B is recruited to mediate membrane fusion. It is presently unknown how cytoskeletal elements cooperate with CHMP4B to mediate abscission. Here, we show that F-actin is associated with midbody secondary sites and is necessary for abscission. F-actin localization at secondary sites depends on the activity of RhoA and on the abscission regulator citron kinase (CITK). CITK depletion accelerates loss of F-actin proteins at the midbody and subsequent cytokinesis defects are reversed by restoring actin polymerization. Conversely, midbody hyperstabilization produced by overexpression of CITK and ANLN is reversed by actin depolymerization. CITK is required for localization of F-actin and ANLN at the abscission sites, as well as for CHMP4B recruitment. These results indicate that control of actin dynamics downstream of CITK prepares the abscission site for the final cut.


Asunto(s)
Actinas/metabolismo , Citocinesis/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Humanos
2.
J Am Soc Nephrol ; 30(5): 795-810, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30988011

RESUMEN

BACKGROUND: Arginine-vasopressin (AVP) binding to vasopressin V2 receptors promotes redistribution of the water channel aquaporin-2 (AQP2) from intracellular vesicles into the plasma membrane of renal collecting duct principal cells. This pathway fine-tunes renal water reabsorption and urinary concentration, and its perturbation is associated with diabetes insipidus. Previously, we identified the antimycotic drug fluconazole as a potential modulator of AQP2 localization. METHODS: We assessed the influence of fluconazole on AQP2 localization in vitro and in vivo as well as the drug's effects on AQP2 phosphorylation and RhoA (a small GTPase, which under resting conditions, maintains F-actin to block AQP2-bearing vesicles from reaching the plasma membrane). We also tested fluconazole's effects on water flow across epithelia of isolated mouse collecting ducts and on urine output in mice treated with tolvaptan, a VR2 blocker that causes a nephrogenic diabetes insipidus-like excessive loss of hypotonic urine. RESULTS: Fluconazole increased plasma membrane localization of AQP2 in principal cells independent of AVP. It also led to an increased AQP2 abundance associated with alterations in phosphorylation status and ubiquitination as well as inhibition of RhoA. In isolated mouse collecting ducts, fluconazole increased transepithelial water reabsorption. In mice, fluconazole increased collecting duct AQP2 plasma membrane localization and reduced urinary output. Fluconazole also reduced urinary output in tolvaptan-treated mice. CONCLUSIONS: Fluconazole promotes collecting duct AQP2 plasma membrane localization in the absence of AVP. Therefore, it might have utility in treating forms of diabetes insipidus (e.g., X-linked nephrogenic diabetes insipidus) in which the kidney responds inappropriately to AVP.


Asunto(s)
Acuaporina 2/metabolismo , Transporte Biológico/genética , Colforsina/farmacología , Diabetes Insípida Nefrogénica/tratamiento farmacológico , Fluconazol/farmacología , Proteína de Unión al GTP rhoA/efectos de los fármacos , Análisis de Varianza , Animales , Membrana Celular/metabolismo , Células Cultivadas , Diabetes Insípida Nefrogénica/metabolismo , Modelos Animales de Enfermedad , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fosforilación/genética , Distribución Aleatoria , Transducción de Señal , Estadísticas no Paramétricas
3.
J Biol Chem ; 291(37): 19618-30, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27484798

RESUMEN

The A-kinase anchoring protein (AKAP) GSK3ß interaction protein (GSKIP) is a cytosolic scaffolding protein binding protein kinase A (PKA) and glycogen synthase kinase 3ß (GSK3ß). Here we show that both the AKAP function of GSKIP, i.e. its direct interaction with PKA, and its direct interaction with GSK3ß are required for the regulation of ß-catenin and thus Wnt signaling. A cytoplasmic destruction complex targets ß-catenin for degradation and thus prevents Wnt signaling. Wnt signals cause ß-catenin accumulation and translocation into the nucleus, where it induces Wnt target gene expression. GSKIP facilitates control of the ß-catenin stabilizing phosphorylation at Ser-675 by PKA. Its interaction with GSK3ß facilitates control of the destabilizing phosphorylation of ß-catenin at Ser-33/Ser-37/Thr-41. The influence of GSKIP on ß-catenin is explained by its scavenger function; it recruits the kinases away from the destruction complex without forming a complex with ß-catenin. The regulation of ß-catenin by GSKIP is specific for this AKAP as AKAP220, which also binds PKA and GSK3ß, did not affect Wnt signaling. We find that the binding domain of AKAP220 for GSK3ß is a conserved GSK3ß interaction domain (GID), which is also present in GSKIP. Our findings highlight an essential compartmentalization of both PKA and GSK3ß by GSKIP, and ascribe a function to a cytosolic AKAP-PKA interaction as a regulatory factor in the control of canonical Wnt signaling. Wnt signaling controls different biological processes, including embryonic development, cell cycle progression, glycogen metabolism, and immune regulation; deregulation is associated with diseases such as cancer, type 2 diabetes, inflammatory, and Alzheimer's and Parkinson's diseases.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Represoras/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo , Proteínas de Anclaje a la Quinasa A , Células A549 , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Glucógeno Sintasa Quinasa 3 beta/genética , Células HEK293 , Células HeLa , Humanos , Dominios Proteicos , Proteínas Represoras/genética , beta Catenina/genética
4.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38464100

RESUMEN

Doublecortin (DCX) is a microtubule-associated protein critical for brain development. Although most highly expressed in the developing central nervous system, the molecular function of DCX in neuron morphogenesis remains unknown and controversial. We demonstrate that DCX function is intimately linked to its microtubule-binding activity. By using human induced pluripotent stem cell (hiPSC)- derived cortical i 3 Neurons genome engineered to express mEmerald-tagged DCX from the endogenous locus, we find that DCX-MT interactions become highly polarized very early during neuron morphogenesis. DCX becomes enriched only on straight microtubules in advancing growth cones with approximately 120 DCX molecules bound per micrometer of growth cone microtubule. At a similar saturation, microtubule-bound DCX molecules begin to impede lysosome transport, and thus can potentially control growth cone organelle entry. In addition, by comparing control, DCX-mEmerald and knockout DCX -/Y i 3 Neurons, we find that DCX stabilizes microtubules in the growth cone peripheral domain by reducing the microtubule catastrophe frequency and the depolymerization rate. DCX -/Y i 3 Neuron morphogenesis was inhibited in soft microenvironments that mimic the viscoelasticity of brain tissue and DCX -/Y neurites failed to grow toward brain-derived neurotrophic factor (BDNF) gradients. Together with high resolution traction force microscopy data, we propose a model in which DCX-decorated, rigid growth cone microtubules provide intracellular mechanical resistance to actomyosin generated contractile forces in soft physiological environments in which weak and transient adhesion-mediated forces in the growth cone periphery may be insufficient for productive growth cone advance. These data provide a new mechanistic understanding of how DCX mutations cause lissencephaly-spectrum brain malformations by impacting growth cone dynamics during neuron morphogenesis in physiological environments.

5.
Elife ; 122023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36715499

RESUMEN

A challenge in analyzing dynamic intracellular cell biological processes is the dearth of methodologies that are sufficiently fast and specific to perturb intracellular protein activities. We previously developed a light-sensitive variant of the microtubule plus end-tracking protein EB1 by inserting a blue light-controlled protein dimerization module between functional domains. Here, we describe an advanced method to replace endogenous EB1 with this light-sensitive variant in a single genome editing step, thereby enabling this approach in human induced pluripotent stem cells (hiPSCs) and hiPSC-derived neurons. We demonstrate that acute and local optogenetic EB1 inactivation in developing cortical neurons induces microtubule depolymerization in the growth cone periphery and subsequent neurite retraction. In addition, advancing growth cones are repelled from areas of blue light exposure. These phenotypes were independent of the neuronal EB1 homolog EB3, revealing a direct dynamic role of EB1-mediated microtubule plus end interactions in neuron morphogenesis and neurite guidance.


Asunto(s)
Células Madre Pluripotentes Inducidas , Proteínas Asociadas a Microtúbulos , Humanos , Genómica , Conos de Crecimiento/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Unión Proteica
6.
Curr Biol ; 32(5): 1197-1205.e4, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35090591

RESUMEN

Chromosome segregation is accomplished by the mitotic spindle, a bipolar micromachine built primarily from microtubules. Different microtubule populations contribute to spindle function: kinetochore microtubules attach and transmit forces to chromosomes, antiparallel interpolar microtubules support spindle structure, and astral microtubules connect spindle poles to the cell cortex.1,2 In mammalian cells, end-binding (EB) proteins associate with all growing microtubule plus ends throughout the cell cycle and serve as adaptors for diverse +TIPs that control microtubule dynamics and interactions with other intracellular structures.3 Because binding of many +TIPs to EB1 and thus microtubule-end association is switched off by mitotic phosphorylation,4-6 the mitotic function of EBs remains poorly understood. To analyze how EB1 and associated +TIPs on different spindle microtubule populations contribute to mitotic spindle dynamics, we use a light-sensitive EB1 variant, π-EB1, that allows local, acute, and reversible inactivation of +TIP association with growing microtubule ends in live cells.7 We find that acute π-EB1 photoinactivation results in rapid and reversible metaphase spindle shortening and transient relaxation of tension across the central spindle. However, in contrast to interphase, π-EB1 photoinactivation does not inhibit microtubule growth in metaphase but instead increases astral microtubule length and number. Yet in the absence of EB1 activity, astral microtubules fail to engage the cortical dynein/dynactin machinery, and spindle poles move away from regions of π-EB1 photoinactivation. In conclusion, our optogenetic approach reveals mitotic EB1 functions that remain hidden in genetic experiments, likely due to compensatory molecular systems regulating vertebrate spindle dynamics.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Optogenética , Animales , Mamíferos , Metafase , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Huso Acromático/metabolismo
7.
Methods Mol Biol ; 2430: 467-481, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35476350

RESUMEN

Micropatterning of extracellular matrix proteins enables defining cell position and shape in experiments investigating intracellular dynamics and organization. While such standardization is advantageous in automated and quantitative analysis of many cells, the original methods generating such patterns are cumbersome and inflexible. However, recent development of contact-less methods that allow photochemical generation of protein patterns robustly and rapidly is boosting the broader availability of micropatterning approaches. Here, we describe an optimized protocol to achieve large micropatterned areas with high fidelity using a commercially available microscope-mounted UV projection system.


Asunto(s)
Proteínas de la Matriz Extracelular , Matriz Extracelular , Forma de la Célula , Proteínas de la Matriz Extracelular/metabolismo , Microtúbulos/metabolismo
8.
Elife ; 102021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33587036

RESUMEN

The Parkinson's disease protein α-synuclein (αSyn) promotes membrane fusion and fission by interacting with various negatively charged phospholipids. Despite postulated roles in endocytosis and exocytosis, plasma membrane (PM) interactions of αSyn are poorly understood. Here, we show that phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3), two highly acidic components of inner PM leaflets, mediate PM localization of endogenous pools of αSyn in A2780, HeLa, SK-MEL-2, and differentiated and undifferentiated neuronal SH-SY5Y cells. We demonstrate that αSyn binds to reconstituted PIP2 membranes in a helical conformation in vitro and that PIP2 synthesizing kinases and hydrolyzing phosphatases reversibly redistribute αSyn in cells. We further delineate that αSyn-PM targeting follows phosphoinositide-3 kinase (PI3K)-dependent changes of cellular PIP2 and PIP3 levels, which collectively suggests that phosphatidylinositol polyphosphates contribute to αSyn's function(s) at the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Enfermedad de Parkinson/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , alfa-Sinucleína/metabolismo , Membrana Celular/genética , Humanos , Enfermedad de Parkinson/genética , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Transporte de Proteínas , alfa-Sinucleína/genética
9.
Curr Opin Cell Biol ; 66: 1-10, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32371345

RESUMEN

Cell biology is moving from observing molecules to controlling them in real time, a critical step towards a mechanistic understanding of how cells work. Initially developed from light-gated ion channels to control neuron activity, optogenetics now describes any genetically encoded protein system designed to accomplish specific light-mediated tasks. Recent photosensitive switches use many ingenious designs that bring spatial and temporal control within reach for almost any protein or pathway of interest. This next generation optogenetics includes light-controlled protein-protein interactions and shape-shifting photosensors, which in combination with live microscopy enable acute modulation and analysis of dynamic protein functions in living cells. We provide a brief overview of various types of optogenetic switches. We then discuss how diverse approaches have been used to control cytoskeleton dynamics with light through Rho GTPase signaling, microtubule and actin assembly, mitotic spindle positioning and intracellular transport and highlight advantages and limitations of different experimental strategies.


Asunto(s)
Citoesqueleto/metabolismo , Optogenética , Animales , Citoesqueleto/efectos de la radiación , Humanos , Luz , Transducción de Señal/efectos de la radiación , Proteínas de Unión al GTP rho/metabolismo
10.
Cells ; 9(3)2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32164329

RESUMEN

Arginine-vasopressin (AVP) facilitates water reabsorption in renal collecting duct principal cells through regulation of the water channel aquaporin-2 (AQP2). The hormone binds to vasopressin V2 receptors (V2R) on the surface of the cells and stimulates cAMP synthesis. The cAMP activates protein kinase A (PKA), which initiates signaling that causes an accumulation of AQP2 in the plasma membrane of the cells facilitating water reabsorption from primary urine and fine-tuning of body water homeostasis. AVP-mediated PKA activation also causes an increase in the AQP2 protein abundance through a mechanism that involves dephosphorylation of AQP2 at serine 261 and a decrease in its poly-ubiquitination. However, the signaling downstream of PKA that controls the localization and abundance of AQP2 is incompletely understood. We carried out an siRNA screen targeting 719 kinase-related genes, representing the majority of the kinases of the human genome and analyzed the effect of the knockdown on AQP2 by high-content imaging and biochemical approaches. The screening identified 13 hits whose knockdown inhibited the AQP2 accumulation in the plasma membrane. Amongst the candidates was the so far hardly characterized cyclin-dependent kinase 18 (CDK18). Our further analysis revealed a hitherto unrecognized signalosome comprising CDK18, an E3 ubiquitin ligase, STUB1 (CHIP), PKA and AQP2 that controls the localization and abundance of AQP2. CDK18 controls AQP2 through phosphorylation at serine 261 and STUB1-mediated ubiquitination. STUB1 functions as an A-kinase anchoring protein (AKAP) tethering PKA to the protein complex and bridging AQP2 and CDK18. The modulation of the protein complex may lead to novel concepts for the treatment of disorders which are caused or are associated with dysregulated AQP2 and for which a satisfactory treatment is not available, e.g., hyponatremia, liver cirrhosis, diabetes insipidus, ADPKD or heart failure.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Acuaporina 2/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Humanos , Ligasas/metabolismo , Ratones , Ubiquitina/metabolismo
11.
Cell Signal ; 27(12): 2474-87, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26386412

RESUMEN

The second messenger cyclic adenosine monophosphate (cAMP) can bind and activate protein kinase A (PKA). The cAMP/PKA system is ubiquitous and involved in a wide array of biological processes and therefore requires tight spatial and temporal regulation. Important components of the safeguard system are the A-kinase anchoring proteins (AKAPs), a heterogeneous family of scaffolding proteins defined by its ability to directly bind PKA. AKAPs tether PKA to specific subcellular compartments, and they bind further interaction partners to create local signalling hubs. The recent discovery of new AKAPs and advances in the field that shed light on the relevance of these hubs for human disease highlight unique opportunities for pharmacological modulation. This review exemplifies how interference with signalling, particularly cAMP signalling, at such hubs can reshape signalling responses and discusses how this could lead to novel pharmacological concepts for the treatment of disease with an unmet medical need such as cardiovascular disease and cancer.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , AMP Cíclico/metabolismo , Sistemas de Mensajero Secundario , Secuencia de Aminoácidos , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Fármacos Cardiovasculares/farmacología , Fármacos Cardiovasculares/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Secuencia Conservada , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Datos de Secuencia Molecular , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Mapas de Interacción de Proteínas
12.
Mol Biol Cell ; 22(20): 3768-78, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21849473

RESUMEN

The small GTPase RhoA plays a crucial role in the different stages of cytokinesis, including contractile ring formation, cleavage furrow ingression, and midbody abscission. Citron kinase (CIT-K), a protein required for cytokinesis and conserved from insects to mammals, is currently considered a cytokinesis-specific effector of active RhoA. In agreement with previous observations, we show here that, as in Drosophila cells, CIT-K is specifically required for abscission in mammalian cells. However, in contrast with the current view, we provide evidence that CIT-K is an upstream regulator rather than a downstream effector of RhoA during late cytokinesis. In addition, we show that CIT-K is capable of physically and functionally interacting with the actin-binding protein anillin. Active RhoA and anillin are displaced from the midbody in CIT-K-depleted cells, while only anillin, but not CIT-K, is affected if RhoA is inactivated in late cytokinesis. The overexpression of CIT-K and of anillin leads to abscission delay. However, the delay produced by CIT-K overexpression can be reversed by RhoA inactivation, while the delay produced by anillin overexpression is RhoA-independent. Altogether, these results indicate that CIT-K is a crucial abscission regulator that may promote midbody stability through active RhoA and anillin.


Asunto(s)
Cerebelo/metabolismo , Proteínas Contráctiles/metabolismo , Citocinesis/genética , Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/fisiología , Proteína de Unión al GTP rhoA/metabolismo , Animales , Cerebelo/citología , Proteínas Contráctiles/genética , Femenino , Silenciador del Gen , Células HeLa , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño , Transfección , Proteína de Unión al GTP rhoA/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA