Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
BMC Microbiol ; 18(Suppl 1): 161, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470172

RESUMEN

BACKGROUND: Tsetse flies (Diptera: Glossinidae) are the vectors of African trypanosomosis, the causal agent of sleeping sickness in humans and nagana in animals. Glossina fuscipes fuscipes is one of the most important tsetse vectors of sleeping sickness, particularly in Central Africa. Due to the development of resistance of the trypanosomes to the commonly used trypanocidal drugs and the lack of effective vaccines, vector control approaches remain the most effective strategies for sustainable management of those diseases. The Sterile Insect Technique (SIT) is an effective, environment-friendly method for the management of tsetse flies in the context of area-wide integrated pest management programs (AW-IPM). This technique relies on the mass-production of the target insect, its sterilization with ionizing radiation and the release of sterile males in the target area where they will mate with wild females and induce sterility in the native population. It has been shown that Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) infection causes a decrease in fecundity and fertility hampering the maintenance of colonies of the tsetse fly G. pallidipes. This virus has also been detected in different species of tsetse files. In this study, we evaluated the impact of GpSGHV on the performance of a colony of the heterologous host G. f. fuscipes, including the flies' productivity, mortality, survival, flight propensity and mating ability and insemination rates. RESULTS: Even though GpSGHV infection did not induce SGH symptoms, it significantly reduced all examined parameters, except adult flight propensity and insemination rate. CONCLUSION: These results emphasize the important role of GpSGHV management strategy in the maintenance of G. f. fuscipes colonies and the urgent need to implement measures to avoid virus infection, to ensure the optimal mass production of this tsetse species for use in AW-IPM programs with an SIT component.


Asunto(s)
Citomegalovirus/patogenicidad , Glossinidae/virología , Moscas Tse-Tse/virología , Animales , Femenino , Glossinidae/fisiología , Hipertrofia , Control de Insectos , Virus de Insectos/patogenicidad , Masculino
2.
BMC Microbiol ; 18(Suppl 1): 160, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470179

RESUMEN

BACKGROUND: Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of the causative agents of African Trypanosomosis, which has been identified as a neglected tropical disease in both humans and animals in many regions of sub-Saharan Africa. The sterile insect technique (SIT) has shown to be a powerful method to manage tsetse fly populations when used in the frame of an area-wide integrated pest management (AW-IPM) program. To date, the release of sterile males to manage tsetse fly populations has only been implemented in areas to reduce transmission of animal African Trypanosomosis (AAT). The implementation of the SIT in areas with Human African Trypanosomosis (HAT) would require additional measures to eliminate the potential risk associated with the release of sterile males that require blood meals to survive and hence, might contribute to disease transmission. Paratransgenesis offers the potential to develop tsetse flies that are refractory to trypanosome infection by modifying their associated bacteria (Sodalis glossinidius) here after referred to as Sodalis. Here we assessed the feasibility of combining the paratransgenesis approach with SIT by analyzing the impact of ionizing radiation on the copy number of Sodalis and the vectorial capacity of sterilized tsetse males. RESULTS: Adult Glossina morsitans morsitans that emerged from puparia irradiated on day 22 post larviposition did not show a significant decline in Sodalis copy number as compared with non-irradiated flies. Conversely, the Sodalis copy number was significantly reduced in adults that emerged from puparia irradiated on day 29 post larviposition and in adults irradiated on day 7 post emergence. Moreover, irradiating 22-day old puparia reduced the copy number of Wolbachia and Wigglesworthia in emerged adults as compared with non-irradiated controls, but the radiation treatment had no significant impact on the vectorial competence of the flies. CONCLUSION: Although the radiation treatment significantly reduced the copy number of some tsetse fly symbionts, the copy number of Sodalis recovered with time in flies irradiated as 22-day old puparia. This recovery offers the opportunity to combine a paratransgenesis approach - using modified Sodalis to produce males refractory to trypanosome infection - with the release of sterile males to minimize the risk of disease transmission, especially in HAT endemic areas. Moreover, irradiation did not increase the vector competence of the flies for trypanosomes.


Asunto(s)
ADN/efectos de la radiación , Enterobacteriaceae/genética , Enterobacteriaceae/efectos de la radiación , Control de Insectos/métodos , Radiación Ionizante , Moscas Tse-Tse/microbiología , Animales , Infecciones por Enterobacteriaceae , Femenino , Insectos Vectores/microbiología , Masculino , Simbiosis
3.
BMC Microbiol ; 18(Suppl 1): 147, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470190

RESUMEN

BACKGROUND: Tsetse flies (Diptera: Glossinidae) are solely responsible for the transmission of African trypanosomes, causative agents of sleeping sickness in humans and nagana in livestock. Due to the lack of efficient vaccines and the emergence of drug resistance, vector control approaches such as the sterile insect technique (SIT), remain the most effective way to control disease. SIT is a species-specific approach and therefore requires accurate identification of natural pest populations at the species level. However, the presence of morphologically similar species (species complexes and sub-species) in tsetse flies challenges the successful implementation of SIT-based population control. RESULTS: In this study, we evaluate different molecular tools that can be applied for the delimitation of different Glossina species using tsetse samples derived from laboratory colonies, natural populations and museum specimens. The use of mitochondrial markers, nuclear markers (including internal transcribed spacer 1 (ITS1) and different microsatellites), and bacterial symbiotic markers (Wolbachia infection status) in combination with relatively inexpensive techniques such as PCR, agarose gel electrophoresis, and to some extent sequencing provided a rapid, cost effective, and accurate identification of several tsetse species. CONCLUSIONS: The effectiveness of SIT benefits from the fine resolution of species limits in nature. The present study supports the quick identification of large samples using simple and cost effective universalized protocols, which can be easily applied by countries/laboratories with limited resources and expertise.


Asunto(s)
Insectos Vectores/clasificación , Tipificación Molecular/métodos , Moscas Tse-Tse/clasificación , Moscas Tse-Tse/microbiología , Wolbachia/genética , Animales , ADN Espaciador Ribosómico/genética , Electroforesis en Gel de Agar , Mitocondrias/genética , Tipificación Molecular/economía , Reacción en Cadena de la Polimerasa , Simbiosis/genética
4.
BMC Microbiol ; 18(Suppl 1): 179, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470182

RESUMEN

With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.


Asunto(s)
Insectos Vectores/fisiología , Simbiosis/genética , Moscas Tse-Tse/parasitología , Animales , Femenino , Control de Insectos/métodos , Control de Insectos/organización & administración , Insectos Vectores/parasitología , Microbiota , Trypanosoma/genética , Tripanosomiasis Africana/prevención & control , Tripanosomiasis Africana/transmisión , Moscas Tse-Tse/fisiología
5.
BMC Microbiol ; 18(Suppl 1): 183, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470186

RESUMEN

BACKGROUND: Hytrosaviruses (SGHVs; Hytrosaviridae family) are double-stranded DNA (dsDNA) viruses that cause salivary gland hypertrophy (SGH) syndrome in flies. Two structurally and functionally distinct SGHVs are recognized; Glossina pallidipes SGHV (GpSGHV) and Musca domestica SGHV (MdSGHV), that infect the hematophagous tsetse fly and the filth-feeding housefly, respectively. Genome sizes and gene contents of GpSGHV (~ 190 kb; 160-174 genes) and MdSGHV (~ 124 kb; 108 genes) may reflect an evolution with the SGHV-hosts resulting in differences in pathobiology. Whereas GpSGHV can switch from asymptomatic to symptomatic infections in response to certain unknown cues, MdSGHV solely infects symptomatically. Overt SGH characterizes the symptomatic infections of SGHVs, but whereas MdSGHV induces both nuclear and cellular hypertrophy (enlarged non-replicative cells), GpSGHV induces cellular hyperplasia (enlarged replicative cells). Compared to GpSGHV's specificity to Glossina species, MdSGHV infects other sympatric muscids. The MdSGHV-induced total shutdown of oogenesis inhibits its vertical transmission, while the GpSGHV's asymptomatic and symptomatic infections promote vertical and horizontal transmission, respectively. This paper reviews the coevolution of the SGHVs and their hosts (housefly and tsetse fly) based on phylogenetic relatedness of immune gene orthologs/paralogs and compares this with other virus-insect models. RESULTS: Whereas MdSGHV is not vertically transmitted, GpSGHV is both vertically and horizontally transmitted, and the balance between the two transmission modes may significantly influence the pathogenesis of tsetse virus. The presence and absence of bacterial symbionts (Wigglesworthia and Sodalis) in tsetse and Wolbachia in the housefly, respectively, potentially contributes to the development of SGH symptoms. Unlike MdSGHV, GpSGHV contains not only host-derived proteins, but also appears to have evolutionarily recruited cellular genes from ancestral host(s) into its genome, which, although may be nonessential for viral replication, potentially contribute to the evasion of host's immune responses. Whereas MdSGHV has evolved strategies to counteract both the housefly's RNAi and apoptotic responses, the housefly has expanded its repertoire of immune effector, modulator and melanization genes compared to the tsetse fly. CONCLUSIONS: The ecologies and life-histories of the housefly and tsetse fly may significantly influence coevolution of MdSGHV and GpSGHV with their hosts. Although there are still many unanswered questions regarding the pathogenesis of SGHVs, and the extent to which microbiota influence expression of overt SGH symptoms, SGHVs are attractive 'explorers' to elucidate the immune responses of their hosts, and the transmission modes of other large DNA viruses.


Asunto(s)
Coevolución Biológica , Citomegalovirus/genética , Evolución Molecular , Interacciones Microbiota-Huesped , Moscas Tse-Tse/virología , Animales , Citomegalovirus/inmunología , Virus ADN/genética , ADN Viral/genética , Tamaño del Genoma , Moscas Domésticas/inmunología , Moscas Domésticas/virología , Virus de Insectos/genética , Virus de Insectos/inmunología , Filogenia , Glándulas Salivales/patología , Glándulas Salivales/virología , Moscas Tse-Tse/inmunología , Virión/inmunología , Replicación Viral
6.
BMC Microbiol ; 18(Suppl 1): 153, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470187

RESUMEN

BACKGROUND: Tsetse flies are vectors of African trypanosomes, protozoan parasites that cause sleeping sickness (or human African trypanosomosis) in humans and nagana (or animal African trypanosomosis) in livestock. In addition to trypanosomes, four symbiotic bacteria Wigglesworthia glossinidia, Sodalis glossinidius, Wolbachia, Spiroplasma and one pathogen, the salivary gland hypertrophy virus (SGHV), have been reported in different tsetse species. We evaluated the prevalence and coinfection dynamics between Wolbachia, trypanosomes, and SGHV in four tsetse species (Glossina palpalis gambiensis, G. tachinoides, G. morsitans submorsitans, and G. medicorum) that were collected between 2008 and 2015 from 46 geographical locations in West Africa, i.e. Burkina Faso, Mali, Ghana, Guinea, and Senegal. RESULTS: The results indicated an overall low prevalence of SGHV and Wolbachia and a high prevalence of trypanosomes in the sampled wild tsetse populations. The prevalence of all three infections varied among tsetse species and sample origin. The highest trypanosome prevalence was found in Glossina tachinoides (61.1%) from Ghana and in Glossina palpalis gambiensis (43.7%) from Senegal. The trypanosome prevalence in the four species from Burkina Faso was lower, i.e. 39.6% in Glossina medicorum, 18.08%; in Glossina morsitans submorsitans, 16.8%; in Glossina tachinoides and 10.5% in Glossina palpalis gambiensis. The trypanosome prevalence in Glossina palpalis gambiensis was lowest in Mali (6.9%) and Guinea (2.2%). The prevalence of SGHV and Wolbachia was very low irrespective of location or tsetse species with an average of 1.7% for SGHV and 1.0% for Wolbachia. In some cases, mixed infections with different trypanosome species were detected. The highest prevalence of coinfection was Trypanosoma vivax and other Trypanosoma species (9.5%) followed by coinfection of T. congolense with other trypanosomes (7.5%). The prevalence of coinfection of T. vivax and T. congolense was (1.0%) and no mixed infection of trypanosomes, SGHV and Wolbachia was detected. CONCLUSION: The results indicated a high rate of trypanosome infection in tsetse wild populations in West African countries but lower infection rate of both Wolbachia and SGHV. Double or triple mixed trypanosome infections were found. In addition, mixed trypanosome and SGHV infections existed however no mixed infections of trypanosome and/or SGHV with Wolbachia were found.


Asunto(s)
Citomegalovirus/aislamiento & purificación , Trypanosoma/aislamiento & purificación , Moscas Tse-Tse/microbiología , Moscas Tse-Tse/parasitología , Moscas Tse-Tse/virología , Wolbachia/aislamiento & purificación , África Occidental , Animales , Citomegalovirus/patogenicidad , Geografía , Ghana , Humanos , Insectos Vectores/microbiología , Insectos Vectores/parasitología , Insectos Vectores/virología , Prevalencia , Spiroplasma/aislamiento & purificación , Simbiosis
7.
Parasit Vectors ; 15(1): 447, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36447246

RESUMEN

BACKGROUND: Tsetse control is considered an effective and sustainable tactic for the control of cyclically transmitted trypanosomosis in the absence of effective vaccines and inexpensive, effective drugs. The sterile insect technique (SIT) is currently used to eliminate tsetse fly populations in an area-wide integrated pest management (AW-IPM) context in Senegal. For SIT, tsetse mass rearing is a major milestone that associated microbes can influence. Tsetse flies can be infected with microorganisms, including the primary and obligate Wigglesworthia glossinidia, the commensal Sodalis glossinidius, and Wolbachia pipientis. In addition, tsetse populations often carry a pathogenic DNA virus, the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) that hinders tsetse fertility and fecundity. Interactions between symbionts and pathogens might affect the performance of the insect host. METHODS: In the present study, we assessed associations of GpSGHV and tsetse endosymbionts under field conditions to decipher the possible bidirectional interactions in different Glossina species. We determined the co-infection pattern of GpSGHV and Wolbachia in natural tsetse populations. We further analyzed the interaction of both Wolbachia and GpSGHV infections with Sodalis and Wigglesworthia density using qPCR. RESULTS: The results indicated that the co-infection of GpSGHV and Wolbachia was most prevalent in Glossina austeni and Glossina morsitans morsitans, with an explicit significant negative correlation between GpSGHV and Wigglesworthia density. GpSGHV infection levels > 103.31 seem to be absent when Wolbachia infection is present at high density (> 107.36), suggesting a potential protective role of Wolbachia against GpSGHV. CONCLUSION: The result indicates that Wolbachia infection might interact (with an undefined mechanism) antagonistically with SGHV infection protecting tsetse fly against GpSGHV, and the interactions between the tsetse host and its associated microbes are dynamic and likely species specific; significant differences may exist between laboratory and field conditions.


Asunto(s)
Coinfección , Glossinidae , Infertilidad , Moscas Tse-Tse , Animales , Citomegalovirus , Hipertrofia , Glándulas Salivales
8.
Sci Rep ; 12(1): 3322, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228552

RESUMEN

The sterile insect technique (SIT) is an environment friendly and sustainable method to manage insect pests of economic importance through successive releases of sterile irradiated males of the targeted species to a defined area. A mating of a sterile male with a virgin wild female will result in no offspring, and ultimately lead to the suppression or eradication of the targeted population. Tsetse flies, vectors of African Trypanosoma, have a highly regulated and defined microbial fauna composed of three bacterial symbionts that may have a role to play in the establishment of Trypanosoma infections in the flies and hence, may influence the vectorial competence of the released sterile males. Sodalis bacteria seem to interact with Trypanosoma infection in tsetse flies. Field-caught tsetse flies of ten different taxa and from 15 countries were screened using PCR to detect the presence of Sodalis and Trypanosoma species and analyse their interaction. The results indicate that the prevalence of Sodalis and Trypanosoma varied with country and tsetse species. Trypanosome prevalence was higher in east, central and southern African countries than in west African countries. Tsetse fly infection rates with Trypanosoma vivax and T. brucei sspp were higher in west African countries, whereas tsetse infection with T. congolense and T. simiae, T. simiae (tsavo) and T. godfreyi were higher in east, central and south African countries. Sodalis prevalence was high in Glossina morsitans morsitans and G. pallidipes but absent in G. tachinoides. Double and triple infections with Trypanosoma taxa and coinfection of Sodalis and Trypanosoma were rarely observed but it occurs in some taxa and locations. A significant Chi square value (< 0.05) seems to suggest that Sodalis and Trypanosoma infection correlate in G. palpalis gambiensis, G. pallidipes and G. medicorum. Trypanosoma infection seemed significantly associated with an increased density of Sodalis in wild G. m. morsitans and G. pallidipes flies, however, there was no significant impact of Sodalis infection on trypanosome density.


Asunto(s)
Trypanosoma , Tripanosomiasis Africana , Moscas Tse-Tse , Animales , Enterobacteriaceae , Femenino , Insectos Vectores/microbiología , Masculino , Prevalencia , Simbiosis , Trypanosoma/genética , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/prevención & control , Moscas Tse-Tse/microbiología
9.
Front Microbiol ; 12: 653880, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34122367

RESUMEN

Tsetse flies are the sole cyclic vector for trypanosomosis, the causative agent for human African trypanosomosis or sleeping sickness and African animal trypanosomosis or nagana. Tsetse population control is the most efficient strategy for animal trypanosomosis control. Among all tsetse control methods, the Sterile Insect Technique (SIT) is one of the most powerful control tactics to suppress or eradicate tsetse flies. However, one of the challenges for the implementation of SIT is the mass production of target species. Tsetse flies have a highly regulated and defined microbial fauna composed of three bacterial symbionts (Wigglesworthia, Sodalis and Wolbachia) and a pathogenic Glossina pallidipes Salivary Gland Hypertrophy Virus (GpSGHV) which causes reproduction alterations such as testicular degeneration and ovarian abnormalities with reduced fertility and fecundity. Interactions between symbionts and GpSGHV might affect the performance of the insect host. In the present study, we assessed the possible impact of GpSGHV on the prevalence of tsetse endosymbionts under laboratory conditions to decipher the bidirectional interactions on six Glossina laboratory species. The results indicate that tsetse symbiont densities increased over time in tsetse colonies with no clear impact of the GpSGHV infection on symbionts density. However, a positive correlation between the GpSGHV and Sodalis density was observed in Glossina fuscipes species. In contrast, a negative correlation between the GpSGHV density and symbionts density was observed in the other taxa. It is worth noting that the lowest Wigglesworthia density was observed in G. pallidipes, the species which suffers most from GpSGHV infection. In conclusion, the interactions between GpSGHV infection and tsetse symbiont infections seems complicated and affected by the host and the infection density of the GpSGHV and tsetse symbionts.

10.
Sci Rep ; 11(1): 20182, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642368

RESUMEN

The Sterile Insect Technique (SIT) is a successful autocidal control method that uses ionizing radiation to sterilize insects. However, irradiation in normal atmospheric conditions can be damaging for males, because irradiation generates substantial biological oxidative stress that, combined with domestication and mass-rearing conditions, may reduce sterile male sexual competitiveness and quality. In this study, biological oxidative stress and antioxidant capacity were experimentally manipulated in Anastrepha suspensa using a combination of low-oxygen conditions and transgenic overexpression of mitochondrial superoxide dismutase (SOD2) to evaluate their role in the sexual behavior and quality of irradiated males. Our results showed that SOD2 overexpression enhances irradiated insect quality and improves male competitiveness in leks. However, the improvements in mating performance were modest, as normoxia-irradiated SOD2 males exhibited only a 22% improvement in mating success compared to normoxia-irradiated wild type males. Additionally, SOD2 overexpression did not synergistically improve the mating success of males irradiated in either hypoxia or severe hypoxia. Short-term hypoxic and severe-hypoxic conditioning hormesis, per se, increased antioxidant capacity and enhanced sexual competitiveness of irradiated males relative to non-irradiated males in leks. Our study provides valuable new information that antioxidant enzymes, particularly SOD2, have potential to improve the quality and lekking performance of sterile males used in SIT programs.


Asunto(s)
Infertilidad Masculina/etiología , Control de Insectos/métodos , Oxígeno/metabolismo , Superóxido Dismutasa/genética , Tephritidae/fisiología , Animales , Animales Modificados Genéticamente , Hormesis , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Masculino , Mutación , Estrés Oxidativo , Conducta Sexual Animal/fisiología , Conducta Sexual Animal/efectos de la radiación , Superóxido Dismutasa/metabolismo , Tephritidae/enzimología , Tephritidae/efectos de la radiación
11.
J Econ Entomol ; 112(1): 127-133, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30346545

RESUMEN

The Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is arguably the most significant and studied quarantine pest of fresh fruits. There is well over a century of research observations on its response to cold, first as it pertains to shipment of fruits using cold temperatures to preserve fruit quality and how that may aid the survival and distribution of the pest, and then the use of colder temperatures to kill the pest in fruit shipments. Cold tolerance at 1.1°C in three populations of C. capitata generally increased as the insect developed; therefore, the third instar is the most tolerant of the stages that are found in fruit. The three populations did not differ in cold tolerance, indicating that cold phytosanitary treatments against this pest can be harmonized regardless of country of origin of marketed fruit hosts. This study facilitated the approval of some cold treatment schedules for the International Plant Protection Convention treatment manual that were being held up by concerns of possible differences in cold tolerance among C. capitata populations from different countries and points toward the possibility of generic, broadly applicable phytosanitary cold treatments. Most larvae found alive after 9 d of cold treatment did not pupariate and fewer still emerged as adults, indicating that acute larval mortality need not always be the objective of a cold phytosanitary treatment to be efficacious in preventing the establishment of invasive species.


Asunto(s)
Ceratitis capitata , Control de Insectos/métodos , Animales , Frío
12.
Front Microbiol ; 9: 701, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29686664

RESUMEN

Salivary gland hytrosaviruses (SGHVs, family Hytrosaviridae) are non-occluded dsDNA viruses that are pathogenic to some dipterans. SGHVs primarily replicate in salivary glands (SG), thereby inducing overt salivary gland hypertrophy (SGH) symptoms in their adult hosts. SGHV infection of non-SG tissues results in distinct pathobiologies, including reproductive dysfunctions in tsetse fly, Glossina pallidipes (Diptera: Glossinidae) and house fly. Infection with the G. pallidipes virus (GpSGHV) resulted in the collapse of several laboratory colonies, which hindered the implementation of area wide integrated pest management (AW-IPM) programs that had a sterile insect technique (SIT) component. Although the impact of GpSGHV infection has been studied in some detail in G. pallidipes, the impact of the virus infection on other tsetse species remains largely unknown. In the current study, we assessed the susceptibility of six Glossina species (G. pallidipes, G. brevipalpis, G. m. morsitans, G. m. centralis, G. f. fuscipes, and G. p. gambiensis) to GpSGHV infections, and the impact of the viral infection on the fly pupation rate, adult emergence, and virus replication and transmission from the larval to adult stages. We also evaluated the ability of the virus to infect conspecific Glossina species through serial passages. The results indicate that the susceptibility of Glossina to GpSGHV varied widely amongst the tested species, with G. pallidipes and G. brevipalpis being the most susceptible and most refractory to the virus, respectively. Further, virus injection into the hemocoel of teneral flies led to increased viral copy number over time, while virus injection into the third instar larvae delayed adult eclosion. Except in G. pallidipes, virus injection either into the larvae or teneral adults did not induce any detectable SGH symptoms, although virus infections were PCR-detectable in the fly carcasses. Taken together, our results indicate that although GpSGHV may only cause minor damage in the mass-rearing of tsetse species other than G. pallidipes, preventive control measures are required to avoid viral contamination and transmission in the fly colonies, particularly in the facilities where multiple tsetse species are reared.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA