Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 186(6): 1195-1211.e19, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36796363

RESUMEN

Social interactions require awareness and understanding of the behavior of others. Mirror neurons, cells representing an action by self and others, have been proposed to be integral to the cognitive substrates that enable such awareness and understanding. Mirror neurons of the primate neocortex represent skilled motor tasks, but it is unclear if they are critical for the actions they embody, enable social behaviors, or exist in non-cortical regions. We demonstrate that the activity of individual VMHvlPR neurons in the mouse hypothalamus represents aggression performed by self and others. We used a genetically encoded mirror-TRAP strategy to functionally interrogate these aggression-mirroring neurons. We find that their activity is essential for fighting and that forced activation of these cells triggers aggressive displays by mice, even toward their mirror image. Together, we have discovered a mirroring center in an evolutionarily ancient region that provides a subcortical cognitive substrate essential for a social behavior.


Asunto(s)
Agresión , Hipotálamo , Neuronas Espejo , Animales , Ratones , Agresión/fisiología , Hipotálamo/citología , Conducta Social
3.
Nature ; 613(7942): 160-168, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477540

RESUMEN

Multilocular adipocytes are a hallmark of thermogenic adipose tissue1,2, but the factors that enforce this cellular phenotype are largely unknown. Here, we show that an adipocyte-selective product of the Clstn3 locus (CLSTN3ß) present in only placental mammals facilitates the efficient use of stored triglyceride by limiting lipid droplet (LD) expansion. CLSTN3ß is an integral endoplasmic reticulum (ER) membrane protein that localizes to ER-LD contact sites through a conserved hairpin-like domain. Mice lacking CLSTN3ß have abnormal LD morphology and altered substrate use in brown adipose tissue, and are more susceptible to cold-induced hypothermia despite having no defect in adrenergic signalling. Conversely, forced expression of CLSTN3ß is sufficient to enforce a multilocular LD phenotype in cultured cells and adipose tissue. CLSTN3ß associates with cell death-inducing DFFA-like effector proteins and impairs their ability to transfer lipid between LDs, thereby restricting LD fusion and expansion. Functionally, increased LD surface area in CLSTN3ß-expressing adipocytes promotes engagement of the lipolytic machinery and facilitates fatty acid oxidation. In human fat, CLSTN3B is a selective marker of multilocular adipocytes. These findings define a molecular mechanism that regulates LD form and function to facilitate lipid utilization in thermogenic adipocytes.


Asunto(s)
Adipocitos , Proteínas de Unión al Calcio , Metabolismo de los Lípidos , Proteínas de la Membrana , Animales , Femenino , Humanos , Ratones , Adipocitos/citología , Adipocitos/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Proteínas de Unión al Calcio/deficiencia , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/metabolismo , Placenta , Triglicéridos/metabolismo , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Ácidos Grasos/metabolismo , Hipotermia/metabolismo , Termogénesis
4.
Nature ; 606(7916): 937-944, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676482

RESUMEN

During infection, animals exhibit adaptive changes in physiology and behaviour aimed at increasing survival. Although many causes of infection exist, they trigger similar stereotyped symptoms such as fever, warmth-seeking, loss of appetite and fatigue1,2. Yet exactly how the nervous system alters body temperature and triggers sickness behaviours to coordinate responses to infection remains unknown. Here we identify a previously uncharacterized population of neurons in the ventral medial preoptic area (VMPO) of the hypothalamus that are activated after sickness induced by lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid. These neurons are crucial for generating a fever response and other sickness symptoms such as warmth-seeking and loss of appetite. Single-nucleus RNA-sequencing and multiplexed error-robust fluorescence in situ hybridization uncovered the identity and distribution of LPS-activated VMPO (VMPOLPS) neurons and non-neuronal cells. Gene expression and electrophysiological measurements implicate a paracrine mechanism in which the release of immune signals by non-neuronal cells during infection activates nearby VMPOLPS neurons. Finally, we show that VMPOLPS neurons exert a broad influence on the activity of brain areas associated with behavioural and homeostatic functions and are synaptically and functionally connected to circuit nodes controlling body temperature and appetite. Together, these results uncover VMPOLPS neurons as a control hub that integrates immune signals to orchestrate multiple sickness symptoms in response to infection.


Asunto(s)
Apetito , Fiebre , Infecciones , Neuronas , Área Preóptica , Animales , Apetito/efectos de los fármacos , Depresores del Apetito/farmacología , Fiebre/inducido químicamente , Fiebre/fisiopatología , Hibridación Fluorescente in Situ , Infecciones/inducido químicamente , Infecciones/fisiopatología , Lipopolisacáridos , Neuronas/efectos de los fármacos , Comunicación Paracrina , Poli I-C , Área Preóptica/citología , Área Preóptica/efectos de los fármacos , Área Preóptica/fisiología
5.
Proc Natl Acad Sci U S A ; 119(43): e2210122119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36256819

RESUMEN

Hyperexcitability of brain circuits is a common feature of autism spectrum disorders (ASDs). Genetic deletion of a chromatin-binding protein, retinoic acid induced 1 (RAI1), causes Smith-Magenis syndrome (SMS). SMS is a syndromic ASD associated with intellectual disability, autistic features, maladaptive behaviors, overt seizures, and abnormal electroencephalogram (EEG) patterns. The molecular and neural mechanisms underlying abnormal brain activity in SMS remain unclear. Here we show that panneural Rai1 deletions in mice result in increased seizure susceptibility and prolonged hippocampal seizure duration in vivo and increased dentate gyrus population spikes ex vivo. Brain-wide mapping of neuronal activity pinpointed selective cell types within the limbic system, including the hippocampal dentate gyrus granule cells (dGCs) that are hyperactivated by chemoconvulsant administration or sensory experience in Rai1-deficient brains. Deletion of Rai1 from glutamatergic neurons, but not from gamma-aminobutyric acidergic (GABAergic) neurons, was responsible for increased seizure susceptibility. Deleting Rai1 from the Emx1Cre-lineage glutamatergic neurons resulted in abnormal dGC properties, including increased excitatory synaptic transmission and increased intrinsic excitability. Our work uncovers the mechanism of neuronal hyperexcitability in SMS by identifying Rai1 as a negative regulator of dGC intrinsic and synaptic excitability.


Asunto(s)
Síndrome de Smith-Magenis , Ratones , Animales , Síndrome de Smith-Magenis/genética , Transactivadores/genética , Transactivadores/metabolismo , Fenotipo , Modelos Animales de Enfermedad , Cromatina , Hipocampo/metabolismo , Convulsiones/genética , Tretinoina
6.
J Neurosci ; 43(32): 5810-5830, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37491314

RESUMEN

To understand how the brain produces behavior, we must elucidate the relationships between neuronal connectivity and function. The medial prefrontal cortex (mPFC) is critical for complex functions including decision-making and mood. mPFC projection neurons collateralize extensively, but the relationships between mPFC neuronal activity and brain-wide connectivity are poorly understood. We performed whole-brain connectivity mapping and fiber photometry to better understand the mPFC circuits that control threat avoidance in male and female mice. Using tissue clearing and light sheet fluorescence microscopy (LSFM), we mapped the brain-wide axon collaterals of populations of mPFC neurons that project to nucleus accumbens (NAc), ventral tegmental area (VTA), or contralateral mPFC (cmPFC). We present DeepTraCE (deep learning-based tracing with combined enhancement), for quantifying bulk-labeled axonal projections in images of cleared tissue, and DeepCOUNT (deep-learning based counting of objects via 3D U-net pixel tagging), for quantifying cell bodies. Anatomical maps produced with DeepTraCE aligned with known axonal projection patterns and revealed class-specific topographic projections within regions. Using TRAP2 mice and DeepCOUNT, we analyzed whole-brain functional connectivity underlying threat avoidance. PL was the most highly connected node with functional connections to subsets of PL-cPL, PL-NAc, and PL-VTA target sites. Using fiber photometry, we found that during threat avoidance, cmPFC and NAc-projectors encoded conditioned stimuli, but only when action was required to avoid threats. mPFC-VTA neurons encoded learned but not innate avoidance behaviors. Together our results present new and optimized approaches for quantitative whole-brain analysis and indicate that anatomically defined classes of mPFC neurons have specialized roles in threat avoidance.SIGNIFICANCE STATEMENT Understanding how the brain produces complex behaviors requires detailed knowledge of the relationships between neuronal connectivity and function. The medial prefrontal cortex (mPFC) plays a key role in learning, mood, and decision-making, including evaluating and responding to threats. mPFC dysfunction is strongly linked to fear, anxiety and mood disorders. Although mPFC circuits are clear therapeutic targets, gaps in our understanding of how they produce cognitive and emotional behaviors prevent us from designing effective interventions. To address this, we developed a high-throughput analysis pipeline for quantifying bulk-labeled fluorescent axons [DeepTraCE (deep learning-based tracing with combined enhancement)] or cell bodies [DeepCOUNT (deep-learning based counting of objects via 3D U-net pixel tagging)] in intact cleared brains. Using DeepTraCE, DeepCOUNT, and fiber photometry, we performed detailed anatomic and functional mapping of mPFC neuronal classes, identifying specialized roles in threat avoidance.


Asunto(s)
Encéfalo , Neuronas , Ratones , Masculino , Femenino , Animales , Vías Nerviosas/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Núcleo Accumbens/fisiología
7.
Nature ; 554(7692): 328-333, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29414938

RESUMEN

Brain functions rely on specific patterns of connectivity. Teneurins are evolutionarily conserved transmembrane proteins that instruct synaptic partner matching in Drosophila and are required for vertebrate visual system development. The roles of vertebrate teneurins in connectivity beyond the visual system remain largely unknown and their mechanisms of action have not been demonstrated. Here we show that mouse teneurin-3 is expressed in multiple topographically interconnected areas of the hippocampal region, including proximal CA1, distal subiculum, and medial entorhinal cortex. Viral-genetic analyses reveal that teneurin-3 is required in both CA1 and subicular neurons for the precise targeting of proximal CA1 axons to distal subiculum. Furthermore, teneurin-3 promotes homophilic adhesion in vitro in a splicing isoform-dependent manner. These findings demonstrate striking genetic heterogeneity across multiple hippocampal areas and suggest that teneurin-3 may orchestrate the assembly of a complex distributed circuit in the mammalian brain via matching expression and homophilic attraction.


Asunto(s)
Hipocampo/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas , Neuronas/metabolismo , Empalme Alternativo , Animales , Axones/metabolismo , Región CA1 Hipocampal/citología , Región CA1 Hipocampal/metabolismo , Adhesión Celular , Drosophila melanogaster , Corteza Entorrinal/metabolismo , Femenino , Hipocampo/anatomía & histología , Hipocampo/citología , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Unión Proteica
8.
J Sleep Res ; 29(6): e12976, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-31943457

RESUMEN

The cFos immunostaining allowed the identification of multiple populations of neurons involved in the generation of paradoxical sleep. We adopted the transgenic (targeted recombination in active populations) mouse model, which following injection of tamoxifen, allows expression of Cre-dependent reporter constructs (i.e., mCherry) in neurons expressing cFos during waking or paradoxical sleep hypersomnia following automatic paradoxical sleep deprivation. Three groups of mice were subjected to two periods of waking, one period of waking and one of paradoxical sleep hypersomnia, or two periods of paradoxical sleep hypersomnia. A high percentage of double-labelled neurons was observed in the lateral hypothalamic area and zona incerta of two periods of waking and two periods of paradoxical sleep hypersomnia in mice, but not in those of one period of waking and one of paradoxical sleep hypersomnia in animals. Melanin-concentrating hormone neurons in the lateral hypothalamic area and Lhx6+ cells in the zona incerta constituted 5.7 ± 1.5% and 8.8 ± 2.3% of all mCherry+ cells and 20.6 ± 4.8% and 24.6 ± 5.9% of all cFos+ neurons in two periods of paradoxical sleep hypersomnia in animals. In addition, melanin-concentrating hormone cells as well as Lhx6+ neurons rarely expressed mCherry (or cFos) in the waking condition, in contrast to orexin neurons, which constituted approximately 30% of mCherry+ and cFos+ neurons. Our results validate the TRAP methodology and open the way to use it for identifying the neurons activated during waking and paradoxical sleep hypersomnia. Furthermore, they indicate for the first time that Lhx6+ neurons in the zona incerta, like melanin-concentrating hormone cells in the lateral hypothalamic area, are activated during paradoxical sleep hypersomnia but not during waking. These results indicate that Lhx6+ neurons might play a role in the control of paradoxical sleep, like the melanin-concentrating hormone cells.


Asunto(s)
Trastornos de Somnolencia Excesiva/genética , Proteínas con Homeodominio LIM/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Modelos Genéticos , Privación de Sueño/metabolismo
9.
bioRxiv ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39257764

RESUMEN

The capacity to learn cues that predict aversive outcomes, and understand how to avoid those outcomes, is critical for adaptive behavior. Naturalistic avoidance often means accessing a safe location, but whether a location is safe depends on the nature of the impending threat. These relationships must be rapidly learned if animals are to survive. The prelimbic subregion (PL) of the medial prefrontal cortex (mPFC) integrates learned associations to influence these threat avoidance strategies. Prior work has focused on the role of PL activity in avoidance behaviors that are fully established, leaving the prefrontal mechanisms that drive rapid avoidance learning poorly understood. To determine when and how these learning-related changes emerge, we recorded PL neural activity using miniscope calcium imaging as mice rapidly learned to avoid a threatening cue by accessing a safe location. Over the course of learning, we observed enhanced modulation of PL activity representing intersections of a threatening cue with safe or risky locations and movements between them. We observed rapid changes in PL population dynamics that preceded changes observable in the encoding of individual neurons. Successful avoidance could be predicted from cue-related population dynamics during early learning. Population dynamics during specific epochs of the conditioned tone period correlated with the modeled learning rates of individual animals. In contrast, changes in single-neuron encoding occurred later, once an avoidance strategy had stabilized. Together, our findings reveal the sequence of PL changes that characterize rapid threat avoidance learning.

10.
bioRxiv ; 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38260633

RESUMEN

Memories formed early in life are short-lived while those formed later persist. Recent work revealed that infant memories are stored in a latent state. But why they fail to be retrieved is poorly understood. Here we investigated brain-wide circuit mechanisms underlying infantile amnesia in mice. We performed a screen that combined activity-dependent neuronal tagging at different postnatal ages, tissue clearing and light sheet microscopy. We observed striking developmental transitions in the organization of fear memory networks and changes in the activity and functional connectivity of the retrosplenial cortex (RSP) that aligned with the emergence of persistent memory. 7 days after learning, chemogenetic reactivation of tagged RSP ensembles enhanced memory in adults but not in infants. But after 33 days, reactivating infant-tagged RSP ensembles recovered forgotten memories. These studies show that RSP ensembles store latent infant memories, reveal the time course of RSP functional maturation, and suggest that immature RSP functional networks contribute to infantile amnesia.

11.
bioRxiv ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37693480

RESUMEN

The medial prefrontal cortex (mPFC) plays a key role in learning, mood and decision making, including in how individuals respond to threats 1-6 . mPFC undergoes a uniquely protracted development, with changes in synapse density, cortical thickness, long-range connectivity, and neuronal encoding properties continuing into early adulthood 7-21 . Models suggest that before adulthood, the slow-developing mPFC cannot adequately regulate activity in faster-developing subcortical centers 22,23 . They propose that during development, the enhanced influence of subcortical systems underlies distinctive behavioural strategies of juveniles and adolescents and that increasing mPFC control over subcortical structures eventually allows adult behaviours to emerge. Yet it has remained unclear how a progressive strengthening of top-down control can lead to nonlinear changes in behaviour as individuals mature 24,25 . To address this discrepancy, here we monitored and manipulated activity in the developing brain as animals responded to threats, establishing direct causal links between frontolimbic circuit activity and the behavioural strategies of juvenile, adolescent and adult mice. Rather than a linear strengthening of mPFC synaptic connectivity progressively regulating behaviour, we uncovered multiple developmental switches in the behavioural roles of mPFC circuits targeting the basolateral amygdala (BLA) and nucleus accumbens (NAc). We show these changes are accompanied by axonal pruning coinciding with functional strengthening of synaptic connectivity in the mPFC-BLA and mPFC-NAc pathways, which mature at different rates. Our results reveal how developing mPFC circuits pass through distinct architectures that may make them optimally adapted to the demands of age-specific challenges.

12.
Front Mol Neurosci ; 15: 965756, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003220

RESUMEN

Dysfunction of both microglia and circuitry in the medial prefrontal cortex (mPFC) have been implicated in numerous neuropsychiatric disorders, but how microglia affect mPFC development in health and disease is not well understood. mPFC circuits undergo a prolonged maturation after birth that is driven by molecular programs and activity-dependent processes. Though this extended development is crucial to acquire mature cognitive abilities, it likely renders mPFC circuitry more susceptible to disruption by genetic and environmental insults that increase the risk of developing mental health disorders. Recent work suggests that microglia directly influence mPFC circuit maturation, though the biological factors underlying this observation remain unclear. In this review, we discuss these recent findings along with new studies on the cellular mechanisms by which microglia shape sensory circuits during postnatal development. We focus on the molecular pathways through which glial cells and immune signals regulate synaptogenesis and activity-dependent synaptic refinement. We further highlight how disruptions in these pathways are implicated in the pathogenesis of neurodevelopmental and psychiatric disorders associated with mPFC dysfunction, including schizophrenia and autism spectrum disorder (ASD). Using these disorders as a framework, we discuss microglial mechanisms that could link environmental risk factors including infections and stress with ongoing genetic programs to aberrantly shape mPFC circuitry.

13.
Elife ; 112022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35997072

RESUMEN

Quantitative descriptions of animal behavior are essential to study the neural substrates of cognitive and emotional processes. Analyses of naturalistic behaviors are often performed by hand or with expensive, inflexible commercial software. Recently, machine learning methods for markerless pose estimation enabled automated tracking of freely moving animals, including in labs with limited coding expertise. However, classifying specific behaviors based on pose data requires additional computational analyses and remains a significant challenge for many groups. We developed BehaviorDEPOT (DEcoding behavior based on POsitional Tracking), a simple, flexible software program that can detect behavior from video timeseries and can analyze the results of experimental assays. BehaviorDEPOT calculates kinematic and postural statistics from keypoint tracking data and creates heuristics that reliably detect behaviors. It requires no programming experience and is applicable to a wide range of behaviors and experimental designs. We provide several hard-coded heuristics. Our freezing detection heuristic achieves above 90% accuracy in videos of mice and rats, including those wearing tethered head-mounts. BehaviorDEPOT also helps researchers develop their own heuristics and incorporate them into the software's graphical interface. Behavioral data is stored framewise for easy alignment with neural data. We demonstrate the immediate utility and flexibility of BehaviorDEPOT using popular assays including fear conditioning, decision-making in a T-maze, open field, elevated plus maze, and novel object exploration.


Asunto(s)
Conducta Animal , Programas Informáticos , Animales , Fenómenos Biomecánicos , Aprendizaje Automático , Ratas
14.
Neuron ; 110(5): 795-808.e6, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-34932941

RESUMEN

The neural basis of abnormal social behavior in autism spectrum disorders (ASDs) remains incompletely understood. Here we used two complementary but independent brain-wide mapping approaches, mouse resting-state fMRI and c-Fos-iDISCO+ imaging, to construct brain-wide activity and connectivity maps of the Cntnap2 knockout (KO) mouse model of ASD. At the macroscale level, we detected reduced functional coupling across social brain regions despite general patterns of hyperconnectivity across major brain structures. Oxytocin administration, which rescues social deficits in KO mice, strongly stimulated many brain areas and normalized connectivity patterns. Notably, chemogenetically triggered release of endogenous oxytocin strongly stimulated the nucleus accumbens (NAc), a forebrain nucleus implicated in social reward. Furthermore, NAc-targeted approaches to activate local oxytocin receptors sufficiently rescued their social deficits. Our findings establish circuit- and systems-level mechanisms of social deficits in Cntnap2 KO mice and reveal the NAc as a region that can be modulated by oxytocin to promote social interactions.


Asunto(s)
Trastorno del Espectro Autista , Oxitocina , Animales , Trastorno del Espectro Autista/genética , Encéfalo/metabolismo , Proteínas de la Membrana , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Oxitocina/fisiología , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Conducta Social
15.
Elife ; 102021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33949949

RESUMEN

The medial prefrontal cortex (mPFC) and its abundant connections with other brain regions play key roles in memory, cognition, decision making, social behaviors, and mood. Dysfunction in mPFC is implicated in psychiatric disorders in which these behaviors go awry. The prolonged maturation of mPFC likely enables complex behaviors to emerge, but also increases their vulnerability to disruption. Many foundational studies have characterized either mPFC synaptic or behavioral development without establishing connections between them. Here, we review this rich body of literature, aligning major events in mPFC development with the maturation of complex behaviors. We focus on emotional memory and cognitive flexibility, and highlight new work linking mPFC circuit disruption to alterations of these behaviors in disease models. We advance new hypotheses about the causal connections between mPFC synaptic development and behavioral maturation and propose research strategies to establish an integrated understanding of neural architecture and behavioral repertoires.


Asunto(s)
Cognición , Emociones , Regulación del Desarrollo de la Expresión Génica , Memoria , Corteza Prefrontal/fisiología , Animales , Humanos , Trastornos Mentales/genética , Ratones , Corteza Prefrontal/patología , Conducta Social
16.
Neuron ; 107(3): 566-579.e7, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32473095

RESUMEN

Mother-infant bonding develops rapidly following parturition and is accompanied by changes in sensory perception and behavior. Here, we study how ultrasonic vocalizations (USVs) are represented in the brain of mothers. Using a mouse line that allows temporally controlled genetic access to active neurons, we find that the temporal association cortex (TeA) in mothers exhibits robust USV responses. Rabies tracing from USV-responsive neurons reveals extensive subcortical and cortical inputs into TeA. A particularly dominant cortical source of inputs is the primary auditory cortex (A1), suggesting strong A1-to-TeA connectivity. Chemogenetic silencing of USV-responsive neurons in TeA impairs auditory-driven maternal preference in a pup-retrieval assay. Furthermore, dense extracellular recordings from awake mice reveal changes of both single-neuron and population responses to USVs in TeA, improving discriminability of pup calls in mothers compared with naive females. These data indicate that TeA plays a key role in encoding and perceiving pup cries during motherhood.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Conducta Materna , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Lóbulo Temporal/fisiología , Vocalización Animal , Animales , Corteza Auditiva/citología , Fenómenos Electrofisiológicos , Femenino , Ratones , Vías Nerviosas , Apego a Objetos , Lóbulo Temporal/citología , Ondas Ultrasónicas
17.
Nat Neurosci ; 22(3): 460-469, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30692687

RESUMEN

Memories of fearful events can last a lifetime. The prelimbic (PL) cortex, a subregion of prefrontal cortex, plays a critical role in fear memory retrieval over time. Most studies have focused on acquisition, consolidation, and retrieval of recent memories, but much less is known about the neural mechanisms of remote memory. Using a new knock-in mouse for activity-dependent genetic labeling (TRAP2), we demonstrate that neuronal ensembles in the PL cortex are dynamic. PL neurons TRAPed during later memory retrievals are more likely to be reactivated and make larger behavioral contributions to remote memory retrieval compared to those TRAPed during learning or early memory retrieval. PL activity during learning is required to initiate this time-dependent reorganization in PL ensembles underlying memory retrieval. Finally, while neurons TRAPed during earlier and later retrievals have similar broad projections throughout the brain, PL neurons TRAPed later have a stronger functional recruitment of cortical targets.


Asunto(s)
Corteza Cerebral/fisiología , Memoria a Largo Plazo/fisiología , Recuerdo Mental/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Animales , Condicionamiento Clásico , Miedo , Integrasas/metabolismo , Aprendizaje/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Tamoxifeno/administración & dosificación
18.
Science ; 357(6356): 1149-1155, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28912243

RESUMEN

Water deprivation produces a drive to seek and consume water. How neural activity creates this motivation remains poorly understood. We used activity-dependent genetic labeling to characterize neurons activated by water deprivation in the hypothalamic median preoptic nucleus (MnPO). Single-cell transcriptional profiling revealed that dehydration-activated MnPO neurons consist of a single excitatory cell type. After optogenetic activation of these neurons, mice drank water and performed an operant lever-pressing task for water reward with rates that scaled with stimulation frequency. This stimulation was aversive, and instrumentally pausing stimulation could reinforce lever-pressing. Activity of these neurons gradually decreased over the course of an operant session. Thus, the activity of dehydration-activated MnPO neurons establishes a scalable, persistent, and aversive internal state that dynamically controls thirst-motivated behavior.


Asunto(s)
Conducta de Ingestión de Líquido , Motivación/fisiología , Área Preóptica/fisiología , Sed/fisiología , Animales , Línea Celular , Deshidratación/psicología , Perfilación de la Expresión Génica , Ratones , Motivación/genética , Neuronas/fisiología , Optogenética , Área Preóptica/citología , Análisis de la Célula Individual , Factor 2 Asociado a Receptor de TNF/genética
19.
Cell Rep ; 21(9): 2614-2627, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29186695

RESUMEN

Amyloid beta (Aß) peptides impair multiple cellular pathways and play a causative role in Alzheimer's disease (AD) pathology, but how the brain proteome is remodeled by this process is unknown. To identify protein networks associated with AD-like pathology, we performed global quantitative proteomic analysis in three mouse models at young and old ages. Our analysis revealed a robust increase in Apolipoprotein E (ApoE) levels in nearly all brain regions with increased Aß levels. Taken together with prior findings on ApoE driving Aß accumulation, this analysis points to a pathological dysregulation of the ApoE-Aß axis. We also found dysregulation of protein networks involved in excitatory synaptic transmission. Analysis of the AMPA receptor (AMPAR) complex revealed specific loss of TARPγ-2, a key AMPAR-trafficking protein. Expression of TARPγ-2 in hAPP transgenic mice restored AMPA currents. This proteomic database represents a resource for the identification of protein alterations responsible for AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteoma/análisis , Animales , Apolipoproteínas E/metabolismo , Canales de Calcio/metabolismo , Biología Computacional , Femenino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL
20.
Nat Neurosci ; 18(11): 1687-1697, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26457553

RESUMEN

Information processing in neocortical circuits requires integrating inputs over a wide range of spatial scales, from local microcircuits to long-range cortical and subcortical connections. We used rabies virus-based trans-synaptic tracing to analyze the laminar distribution of local and long-range inputs to pyramidal neurons in the mouse barrel cortex and medial prefrontal cortex (mPFC). In barrel cortex, we found substantial inputs from layer 3 (L3) to L6, prevalent translaminar inhibitory inputs, and long-range inputs to L2/3 or L5/6 preferentially from L2/3 or L5/6 of input cortical areas, respectively. These layer-specific input patterns were largely independent of NMDA receptor function in the recipient neurons. mPFC L5 received proportionally more long-range inputs and more local inhibitory inputs than barrel cortex L5. Our results provide new insight into the organization and development of neocortical networks and identify important differences in the circuit organization in sensory and association cortices.


Asunto(s)
Corteza Motora/fisiología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología , Corteza Somatosensorial/fisiología , Sinapsis/fisiología , Animales , Ratones , Neocórtex/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA