Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(9): 2888-93, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25695968

RESUMEN

Gi-GPCRs, G protein-coupled receptors that signal via Gα proteins of the i/o class (Gαi/o), acutely regulate cellular behaviors widely in mammalian tissues, but their impact on the development and growth of these tissues is less clear. For example, Gi-GPCRs acutely regulate insulin release from pancreatic ß cells, and variants in genes encoding several Gi-GPCRs--including the α-2a adrenergic receptor, ADRA2A--increase the risk of type 2 diabetes mellitus. However, type 2 diabetes also is associated with reduced total ß-cell mass, and the role of Gi-GPCRs in establishing ß-cell mass is unknown. Therefore, we asked whether Gi-GPCR signaling regulates ß-cell mass. Here we show that Gi-GPCRs limit the proliferation of the insulin-producing pancreatic ß cells and especially their expansion during the critical perinatal period. Increased Gi-GPCR activity in perinatal ß cells decreased ß-cell proliferation, reduced adult ß-cell mass, and impaired glucose homeostasis. In contrast, Gi-GPCR inhibition enhanced perinatal ß-cell proliferation, increased adult ß-cell mass, and improved glucose homeostasis. Transcriptome analysis detected the expression of multiple Gi-GPCRs in developing and adult ß cells, and gene-deletion experiments identified ADRA2A as a key Gi-GPCR regulator of ß-cell replication. These studies link Gi-GPCR signaling to ß-cell mass and diabetes risk and identify it as a potential target for therapies to protect and increase ß-cell mass in patients with diabetes.


Asunto(s)
Proliferación Celular , Diabetes Mellitus Tipo 2/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores Adrenérgicos alfa 2/metabolismo , Transducción de Señal , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Glucosa/genética , Glucosa/metabolismo , Células Secretoras de Insulina/patología , Ratones , Ratones Transgénicos , Receptores Adrenérgicos alfa 2/genética
2.
J Neurosci ; 36(38): 9828-42, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27656022

RESUMEN

UNLABELLED: Serotonin (5-HT) is a crucial neuromodulator linked to many psychiatric disorders. However, after more than 60 years of study, its role in behavior remains poorly understood, in part because of a lack of methods to target 5-HT synthesis specifically in the adult brain. Here, we have developed a genetic approach that reproducibly achieves near-complete elimination of 5-HT synthesis from the adult ascending 5-HT system by stereotaxic injection of an adeno-associated virus expressing Cre recombinase (AAV-Cre) into the midbrain/pons of mice carrying a loxP-conditional tryptophan hydroxylase 2 (Tph2) allele. We investigated the behavioral effects of deficient brain 5-HT synthesis and discovered a unique composite phenotype. Surprisingly, adult 5-HT deficiency did not affect anxiety-like behavior, but resulted in a robust hyperactivity phenotype in novel and home cage environments. Moreover, loss of 5-HT led to an altered pattern of circadian behavior characterized by an advance in the onset and a delay in the offset of daily activity, thus revealing a requirement for adult 5-HT in the control of daily activity patterns. Notably, after normalizing for hyperactivity, we found that the normal prolonged break in nocturnal activity (siesta), a period of rapid eye movement (REM) and non-REM sleep, was absent in all animals in which 5-HT deficiency was verified. Our findings identify adult 5-HT as a requirement for siestas, implicate adult 5-HT in sleep-wake homeostasis, and highlight the importance of our adult-specific 5-HT-synthesis-targeting approach in understanding 5-HT's role in controlling behavior. SIGNIFICANCE STATEMENT: Serotonin (5-HT) is a crucial neuromodulator, yet its role in behavior remains poorly understood, in part because of a lack of methods to target specifically adult brain 5-HT synthesis. We developed an approach that reproducibly achieves near-complete elimination of 5-HT synthesis from the adult ascending 5-HT system. Using this technique, we discovered that adult 5-HT deficiency led to a novel compound phenotype consisting of hyperactivity, disrupted circadian behavior patterns, and elimination of siestas, a period of increased sleep during the active phase. These findings highlight the importance of our approach in understanding 5-HT's role in behavior, especially in controlling activity levels, circadian behavior, and sleep-wake homeostasis, behaviors that are disrupted in many psychiatric disorders such as attention deficit hyperactivity disorder.


Asunto(s)
Encéfalo/metabolismo , Trastornos Cronobiológicos/genética , Proteínas Fluorescentes Verdes/deficiencia , Hipercinesia/genética , Parasomnias/genética , Serotonina/deficiencia , Análisis de Varianza , Animales , Cromatografía Líquida de Alta Presión , Trastornos Cronobiológicos/patología , Conducta Exploratoria , Femenino , Proteínas Fluorescentes Verdes/genética , Hipercinesia/patología , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/metabolismo , Transducción Genética , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo
3.
J Neurosci ; 36(5): 1758-74, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26843655

RESUMEN

Newborn neurons enter an extended maturation stage, during which they acquire excitability characteristics crucial for development of presynaptic and postsynaptic connectivity. In contrast to earlier specification programs, little is known about the regulatory mechanisms that control neuronal maturation. The Pet-1 ETS (E26 transformation-specific) factor is continuously expressed in serotonin (5-HT) neurons and initially acts in postmitotic precursors to control acquisition of 5-HT transmitter identity. Using a combination of RNA sequencing, electrophysiology, and conditional targeting approaches, we determined gene expression patterns in maturing flow-sorted 5-HT neurons and the temporal requirements for Pet-1 in shaping these patterns for functional maturation of mouse 5-HT neurons. We report a profound disruption of postmitotic expression trajectories in Pet-1(-/-) neurons, which prevented postnatal maturation of 5-HT neuron passive and active intrinsic membrane properties, G-protein signaling, and synaptic responses to glutamatergic, lysophosphatidic, and adrenergic agonists. Unexpectedly, conditional targeting revealed a postnatal stage-specific switch in Pet-1 targets from 5-HT synthesis genes to transmitter receptor genes required for afferent modulation of 5-HT neuron excitability. Five-HT1a autoreceptor expression depended transiently on Pet-1, thus revealing an early postnatal sensitive period for control of 5-HT excitability genes. Chromatin immunoprecipitation followed by sequencing revealed that Pet-1 regulates 5-HT neuron maturation through direct gene activation and repression. Moreover, Pet-1 directly regulates the 5-HT neuron maturation factor Engrailed 1, which suggests Pet-1 orchestrates maturation through secondary postmitotic regulatory factors. The early postnatal switch in Pet-1 targets uncovers a distinct neonatal stage-specific function for Pet-1, during which it promotes maturation of 5-HT neuron excitability. SIGNIFICANCE STATEMENT: The regulatory mechanisms that control functional maturation of neurons are poorly understood. We show that in addition to inducing brain serotonin (5-HT) synthesis and reuptake, the Pet-1 ETS (E26 transformation-specific) factor subsequently globally coordinates postmitotic expression trajectories of genes necessary for maturation of 5-HT neuron excitability. Further, Pet-1 switches its transcriptional targets as 5-HT neurons mature from 5-HT synthesis genes to G-protein-coupled receptors, which are necessary for afferent synaptic modulation of 5-HT neuron excitability. Our findings uncover gene-specific switching of downstream targets as a previously unrecognized regulatory strategy through which continuously expressed transcription factors control acquisition of neuronal identity at different stages of development.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Neuronas Serotoninérgicas/fisiología , Factores de Transcripción/fisiología , Transcripción Genética/fisiología , Animales , Animales Recién Nacidos , Femenino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/fisiología , Técnicas de Cultivo de Órganos
4.
Nature ; 472(7343): 347-50, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21512572

RESUMEN

Serotonin (5-hydroxytryptamine or 5-HT) is thought to regulate neurodevelopmental processes through maternal-fetal interactions that have long-term mental health implications. It is thought that beyond fetal 5-HT neurons there are significant maternal contributions to fetal 5-HT during pregnancy but this has not been tested empirically. To examine putative central and peripheral sources of embryonic brain 5-HT, we used Pet1(-/-) (also called Fev) mice in which most dorsal raphe neurons lack 5-HT. We detected previously unknown differences in accumulation of 5-HT between the forebrain and hindbrain during early and late fetal stages, through an exogenous source of 5-HT which is not of maternal origin. Using additional genetic strategies, a new technology for studying placental biology ex vivo and direct manipulation of placental neosynthesis, we investigated the nature of this exogenous source. We uncovered a placental 5-HT synthetic pathway from a maternal tryptophan precursor in both mice and humans. This study reveals a new, direct role for placental metabolic pathways in modulating fetal brain development and indicates that maternal-placental-fetal interactions could underlie the pronounced impact of 5-HT on long-lasting mental health outcomes.


Asunto(s)
Feto/metabolismo , Intercambio Materno-Fetal/fisiología , Placenta/metabolismo , Prosencéfalo/embriología , Prosencéfalo/metabolismo , Serotonina/biosíntesis , Animales , Embrión de Mamíferos/metabolismo , Femenino , Feto/embriología , Humanos , Técnicas In Vitro , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal , Núcleos del Rafe/citología , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Serotonina/análisis , Serotonina/metabolismo , Factores de Tiempo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
5.
Proc Natl Acad Sci U S A ; 111(17): 6479-84, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24733892

RESUMEN

Serotonin 2c receptors (5-HT2c-Rs) are drug targets for certain mental disorders, including schizophrenia, depression, and anxiety. 5-HT2c-Rs are expressed throughout the brain, making it difficult to link behavioral changes to circuit specific receptor expression. Various 5-HT-Rs, including 5-HT2c-Rs, are found in the dorsal raphe nucleus (DRN); however, the function of 5-HT2c-Rs and their influence on the serotonergic signals mediating mood disorders remain unclear. To investigate the role of 5-HT2c-Rs in the DRN in mice, we developed a melanopsin-based optogenetic probe for activation of Gq signals in cellular domains, where 5-HT2c-Rs are localized. Our results demonstrate that precise temporal control of Gq signals in 5-HT2c-R domains in GABAergic neurons upstream of 5-HT neurons provides negative feedback regulation of serotonergic firing to modulate anxiety-like behavior in mice.


Asunto(s)
Ansiedad/fisiopatología , Retroalimentación Fisiológica , Neuronas GABAérgicas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Inhibición Neural , Receptor de Serotonina 5-HT2C/metabolismo , Serotonina/metabolismo , Potenciales de Acción/efectos de la radiación , Animales , Ansiedad/metabolismo , Ansiedad/patología , Calcio/metabolismo , Regulación hacia Abajo/efectos de la radiación , Retroalimentación Fisiológica/efectos de la radiación , Neuronas GABAérgicas/patología , Neuronas GABAérgicas/efectos de la radiación , Células HEK293 , Humanos , Espacio Intracelular/metabolismo , Espacio Intracelular/efectos de la radiación , Luz , Ratones , Inhibición Neural/efectos de la radiación , Optogenética , Estructura Terciaria de Proteína , Núcleos del Rafe/metabolismo , Núcleos del Rafe/efectos de la radiación , Opsinas de Bastones/química , Opsinas de Bastones/metabolismo , Transducción de Señal/efectos de la radiación
6.
J Neurosci ; 32(23): 7832-42, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22674259

RESUMEN

Analysis of constitutive Engrailed (En) null mice previously implicated the two En homeobox paralogs in the development of serotonin (5-HT) neurons. An unresolved question is whether En plays intrinsic roles in these neurons. Here, we show that En1 and En2 are expressed in maturing 5-HT neurons that will form the dorsal raphe nucleus (DRN) and part of the median raphe nucleus. Although En1 expression in 5-HT neurons persists postnatally, En2 expression is extinguished by embryonic day 17.5. To investigate intrinsic serotonergic functions for En1/2, we generated compound conditional En mutants with floxed alleles and a cre recombinase line that becomes active in postmitotic fetal 5-HT neurons. We present evidence in support of a requirement for En1/2 in the maturation of DRN cytoarchitecture. The disruption of DRN cytoarchitecture appears to result from a defect in secondary migration of serotonergic cell bodies toward the midline rather than disruption of their primary ventral migration away from the ventricular zone. Furthermore, En1/2 are required for perinatal maintenance of serotonergic identity and postnatal forebrain 5-HT levels. Increased numbers of caspase-3-expressing cells and loss of significant numbers of 5-HT neuron cell bodies, indicative of apoptosis, occurred after loss of serotonergic identity. Analysis of an allelic series of conditional mutants showed that En1 is the predominant functional En paralog in maturing 5-HT neurons, although a small contribution from En2 was reproducibly detected. Together, our findings reveal complex intrinsic functions for En in maturing 5-HT neurons, hence necessitating a reinterpretation of their roles in 5-HT system development.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Núcleos del Rafe/fisiología , Serotonina/fisiología , Alelos , Animales , Animales Recién Nacidos , Recuento de Células , Muerte Celular/genética , Muerte Celular/fisiología , Supervivencia Celular , Cromatografía Líquida de Alta Presión , Técnica del Anticuerpo Fluorescente , Inmunohistoquímica , Ratones , Ratones Noqueados , Mitosis/genética , Mitosis/fisiología , ARN/genética , Núcleos del Rafe/citología , Reacción en Cadena en Tiempo Real de la Polimerasa
7.
J Neurosci ; 32(13): 4400-16, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22457490

RESUMEN

Genetic variations in certain components of the glucocorticoid receptor (GR) chaperone complex have been associated with the development of stress-related affective disorders and individual variability in therapeutic responses to antidepressants. Mechanisms that link GR chaperoning and stress susceptibility are not well understood. Here, we show that the effects of glucocorticoid hormones on socioaffective behaviors are critically regulated via reversible acetylation of Hsp90, a key component of the GR chaperone complex. We provide pharmacological and genetic evidence indicating that the cytoplasmic lysine deacetylase HDAC6 controls Hsp90 acetylation in the brain, and thereby modulates Hsp90-GR protein-protein interactions, as well as hormone- and stress-induced GR translocation, with a critical impact on GR downstream signaling and behavior. Pet1-Cre-driven deletion of HDAC6 in serotonin neurons, the densest HDAC6-expressing cell group in the mouse brain, dramatically reduced acute anxiogenic effects of the glucocorticoid hormone corticosterone in the open-field, elevated plus maze, and social interaction tests. Serotonin-selective depletion of HDAC6 also blocked the expression of social avoidance in mice exposed to chronic social defeat and concurrently prevented the electrophysiological and morphological changes induced, in serotonin neurons, by this murine model of traumatic stress. Together, these results identify HDAC6 inhibition as a potential new strategy for proresilience and antidepressant interventions through regulation of the Hsp90-GR heterocomplex and focal prevention of GR signaling in serotonin pathways. Our data thus uncover an alternate mechanism by which pan-HDAC inhibitors may regulate stress-related behaviors independently of their action on histones.


Asunto(s)
Conducta Animal/fisiología , Histona Desacetilasas/fisiología , Núcleos del Rafe/fisiología , Receptores de Glucocorticoides/fisiología , Resiliencia Psicológica , Neuronas Serotoninérgicas/fisiología , Estrés Psicológico/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/fisiología , Células Cultivadas , Corticosterona/antagonistas & inhibidores , Corticosterona/farmacología , Dexametasona/farmacología , Modelos Animales de Enfermedad , Eliminación de Gen , Regulación de la Expresión Génica , Proteínas HSP90 de Choque Térmico/metabolismo , Histona Desacetilasa 6 , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Imipramina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Chaperonas Moleculares/metabolismo , Núcleos del Rafe/efectos de los fármacos , Núcleos del Rafe/metabolismo , Receptores de Glucocorticoides/metabolismo , Neuronas Serotoninérgicas/citología , Neuronas Serotoninérgicas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Estrés Psicológico/fisiopatología
8.
Eur J Neurosci ; 38(5): 2650-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23841816

RESUMEN

Increased adult neurogenesis is a major neurobiological correlate of the beneficial effects of antidepressants. Indeed, selective serotonin (5-HT) re-uptake inhibitors, which increase 5-HT transmission, enhance adult neurogenesis in the dentate gyrus (DG) of the hippocampus. However, the consequences of 5-HT depletion are still unclear as studies using neurotoxins that target serotonergic neurons reached contradictory conclusions on the role of 5-HT on DG cell proliferation. Here, we analysed two genetic models of 5-HT depletion, the Pet1(-/-) and the VMAT2(f/f) ; SERT(cre/+) mice, which have, respectively, 80 and 95% reductions in hippocampal 5-HT. In both models, we found unchanged cell proliferation of the neural precursors in the DG subgranular zone, whereas a significant increase in the survival of newborn neurons was noted 1 and 4 weeks after BrdU injections. This pro-survival trait was phenocopied pharmacologically with 5-HT synthesis inhibitor PCPA treatment in adults, indicating that this effect was not developmental. Furthermore, a 1-week administration of the 5-HT1A receptor agonist 8-OH-DPAT in Pet1(-/-) and PCPA-treated mice normalised hippocampal cell survival. Overall, our results indicate that constitutive 5-HT depletion does not alter the proliferation of neural precursors in the DG but promotes the survival of newborn cells, an effect which involves activation of postsynaptic 5-HT1A receptors. The role of 5-HT in selective neuronal elimination points to a new facet in its multiple effects in controlling neural circuit maturation.


Asunto(s)
Giro Dentado/metabolismo , Neurogénesis , Neuronas/citología , Serotonina/fisiología , Animales , Supervivencia Celular , Giro Dentado/citología , Femenino , Fenclonina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Serotonina/metabolismo , Serotonina/genética , Serotonina/metabolismo , Antagonistas de la Serotonina/farmacología , Proteínas de Transporte Vesicular de Monoaminas/genética
9.
J Neurosci ; 31(15): 5605-16, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21490201

RESUMEN

Serotonergic neurons possess an enhanced ability to regenerate or sprout after many types of injury. To understand the mechanisms that underlie their unusual properties, we used a combinatorial approach comparing the behavior of serotonergic and cortical axon tips over time in the same injury environment in vivo and to growth-promoting or growth-inhibitory substrates in vitro. After a thermocoagulatory lesion in the rat frontoparietal cortex, callosal axons become dystrophic and die back. Serotonergic axons, however, persist within the lesion edge. At the third week post-injury, 5-HT+ axons sprout robustly. The lesion environment contains both growth-inhibitory chondroitin sulfate proteoglycans (CSPGs) and growth-promoting laminin. Transgenic mouse serotonergic neurons specifically labeled by enhanced yellow fluorescent protein under control of the Pet-1 promoter/enhancer or cortical neurons were cultured on low amounts of laminin with or without relatively high concentrations of the CSPG aggrecan. Serotonergic neurons extended considerably longer neurites than did cortical neurons on low laminin and exhibited a remarkably more active growth cone on low laminin plus aggrecan during time-lapse imaging than did cortical neurons. Chondroitinase ABC treatment of laminin/CSPG substrates resulted in significantly longer serotonergic but not cortical neurite lengths. This increased ability of serotonergic neurons to robustly grow on high amounts of CSPG may be partially due to significantly higher amounts of growth-associated protein-43 and/or ß1 integrin than cortical neurons. Blocking ß1 integrin decreased serotonergic and cortical outgrowth on laminin. Determining the mechanism by which serotonergic fibers persist and sprout after lesion could lead to therapeutic strategies for both stroke and spinal cord injury.


Asunto(s)
Axones/fisiología , Sistema Nervioso Central/lesiones , Neuroglía/fisiología , Neuronas/fisiología , Serotonina/fisiología , Animales , Supervivencia Celular/fisiología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Condroitina ABC Liasa/farmacología , Cicatriz/patología , Cuerpo Calloso/citología , Femenino , Técnica del Anticuerpo Fluorescente , Proteína GAP-43/metabolismo , Conos de Crecimiento/fisiología , Inmunohistoquímica , Integrina beta1/metabolismo , Ratones , Ratones Endogámicos C57BL , Fibras Nerviosas/fisiología , Neuritas/fisiología , Neuritas/ultraestructura , Ratas , Ratas Sprague-Dawley , Receptores de Laminina/biosíntesis , Receptores de Laminina/genética
10.
Nat Neurosci ; 11(4): 417-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18344997

RESUMEN

Central serotonin-producing neurons are heterogeneous-differing in location, morphology, neurotoxin sensitivity and associated clinical disorders-but the underpinnings of this heterogeneity are largely unknown, as are the markers that distinguish physiological subtypes of serotonergic neurons. Here we redefined serotonergic subtypes on the basis of genetic programs that are differentially enacted in progenitor cells. We uncovered a molecular framework for the serotonergic system that, having genetic lineages as its basis, is likely to have physiological relevance and will permit access to genetically defined subtypes for manipulation.


Asunto(s)
Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica/genética , Neuronas/citología , Serotonina/genética , Células Madre/citología , Animales , Biomarcadores/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Rombencéfalo/citología , Rombencéfalo/embriología , Rombencéfalo/metabolismo , Serotonina/metabolismo , Células Madre/metabolismo , Transgenes/genética , Transgenes/fisiología
11.
Elife ; 112022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35471146

RESUMEN

Assembly of transcriptomes encoding unique neuronal identities requires selective accessibility of transcription factors to cis-regulatory sequences in nucleosome-embedded postmitotic chromatin. Yet, the mechanisms controlling postmitotic neuronal chromatin accessibility are poorly understood. Here, we show that unique distal enhancers define the Pet1 neuron lineage that generates serotonin (5-HT) neurons in mice. Heterogeneous single-cell chromatin landscapes are established early in postmitotic Pet1 neurons and reveal the putative regulatory programs driving Pet1 neuron subtype identities. Distal enhancer accessibility is highly dynamic as Pet1 neurons mature, suggesting the existence of regulatory factors that reorganize postmitotic neuronal chromatin. We find that Pet1 and Lmx1b control chromatin accessibility to select Pet1-lineage-specific enhancers for 5-HT neurotransmission. Additionally, these factors are required to maintain chromatin accessibility during early maturation suggesting that postmitotic neuronal open chromatin is unstable and requires continuous regulatory input. Together, our findings reveal postmitotic transcription factors that reorganize accessible chromatin for neuron specialization.


Asunto(s)
Cromatina , Serotonina , Animales , Ratones , Neuronas/fisiología , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética
12.
Cell Rep ; 39(3): 110711, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35443166

RESUMEN

Neurons must function for decades of life, but how these non-dividing cells are preserved is poorly understood. Using mouse serotonin (5-HT) neurons as a model, we report an adult-stage transcriptional program specialized to ensure the preservation of neuronal connectivity. We uncover a switch in Lmx1b and Pet1 transcription factor function from controlling embryonic axonal growth to sustaining a transcriptomic signature of 5-HT connectivity comprising functionally diverse synaptic and axonal genes. Adult-stage deficiency of Lmx1b and Pet1 causes slowly progressing degeneration of 5-HT synapses and axons, increased susceptibility of 5-HT axons to neurotoxic injury, and abnormal stress responses. Axon degeneration occurs in a die back pattern and is accompanied by accumulation of α-synuclein and amyloid precursor protein in spheroids and mitochondrial fragmentation without cell body loss. Our findings suggest that neuronal connectivity is transcriptionally protected by maintenance of connectivity transcriptomes; progressive decay of such transcriptomes may contribute to age-related diseases of brain circuitry.


Asunto(s)
Serotonina , Factores de Transcripción , Animales , Axones/metabolismo , Ratones , Neuronas/metabolismo , Serotonina/metabolismo , Sinapsis/metabolismo , Factores de Transcripción/metabolismo
13.
J Neurosci ; 30(2): 420-30, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20071506

RESUMEN

Embryonic CNS neurons can migrate from the ventricular zone to their final destination by radial glial-guided locomotion. Another less appreciated mechanism is somal translocation, where the young neuron maintains its primitive ventricular and pial processes, through which the cell body moves. A major problem in studying translocation has been the identification of neuronal-specific markers that appear in primitive, radially shaped cells. We used enhanced yellow fluorescent protein under control of the Pet-1 enhancer/promoter region (ePet-EYFP), a specific marker of early differentiated serotonergic neurons, to study their migration via immunohistology and time-lapse imaging of living slice cultures. As early as E10.0, ePet-EYFP-expressing neurons were axonless, radially oriented, and spanned the entire neuroepithelium. The soma translocated within the pial process toward the pial surface and could also translocate through its neurites, which sprouted from the pial process. The dynamin inhibitor dynasore significantly reduced translocation velocity, while the nonmuscle myosin II inhibitor blebbistatin and the kinesin inhibitor AMP-PNP had no significant effect. Here we show for the first time that serotonergic neurons migrate by somal translocation mediated, in part, by dynamin.


Asunto(s)
Movimiento Celular/fisiología , Dinaminas/metabolismo , Epitelio/fisiología , Matriz Extracelular/fisiología , Neuronas/fisiología , Serotonina/metabolismo , Factores de Edad , Animales , Proteínas Bacterianas/genética , Encéfalo/citología , Inhibidores Enzimáticos/farmacología , Epitelio/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Hidrazonas/farmacología , Técnicas In Vitro , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/efectos de los fármacos , Embarazo , Regiones Promotoras Genéticas/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Proteínas Proto-Oncogénicas/genética
14.
J Neurosci ; 30(2): 670-84, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20071532

RESUMEN

The molecular architecture of developing serotonin (5HT) neurons is poorly understood, yet its determination is likely to be essential for elucidating functional heterogeneity of these cells and the contribution of serotonergic dysfunction to disease pathogenesis. Here, we describe the purification of postmitotic embryonic 5HT neurons by flow cytometry for whole-genome microarray expression profiling of this unitary monoaminergic neuron type. Our studies identified significantly enriched expression of hundreds of unique genes in 5HT neurons, thus providing an abundance of new serotonergic markers. Furthermore, we identified several hundred transcripts encoding homeodomain, axon guidance, cell adhesion, intracellular signaling, ion transport, and imprinted genes associated with various neurodevelopmental disorders that were differentially enriched in developing rostral and caudal 5HT neurons. These findings suggested a homeodomain code that distinguishes rostral and caudal 5HT neurons. Indeed, verification studies demonstrated that Hmx homeodomain and Hox gene expression defined an Hmx(+) rostral subtype and Hox(+) caudal subtype. Expression of engrailed genes in a subset of 5HT neurons in the rostral domain further distinguished two subtypes defined as Hmx(+)En(+) and Hmx(+)En(-). The differential enrichment of gene sets for different canonical pathways and gene ontology categories provided additional evidence for heterogeneity between rostral and caudal 5HT neurons. These findings demonstrate a deep transcriptome and biological pathway duality for neurons that give rise to the ascending and descending serotonergic subsystems. Our databases provide a rich, clinically relevant resource for definition of 5HT neuron subtypes and elucidation of the genetic networks required for serotonergic function.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas/clasificación , Neuronas/metabolismo , Serotonina/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Proteínas Bacterianas/genética , Análisis por Conglomerados , Biología Computacional/métodos , Embrión de Mamíferos , Citometría de Flujo/métodos , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Rombencéfalo/citología
15.
J Biol Chem ; 285(40): 30825-36, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20643652

RESUMEN

Understanding serotonergic (5-HT) signaling is critical for understanding human physiology, behavior, and neuropsychiatric disease. 5-HT mediates its actions via ionotropic and metabotropic 5-HT receptors. The 5-HT(1A) receptor is a metabotropic G protein-coupled receptor linked to the G(i/o) signaling pathway and has been specifically implicated in the pathogenesis of depression and anxiety. To understand and precisely control 5-HT(1A) signaling, we created a light-activated G protein-coupled receptor that targets into 5-HT(1A) receptor domains and substitutes for endogenous 5-HT(1A) receptors. To induce 5-HT(1A)-like targeting, vertebrate rhodopsin was tagged with the C-terminal domain (CT) of 5-HT(1A) (Rh-CT(5-HT1A)). Rh-CT(5-HT1A) activates G protein-coupled inward rectifying K(+) channels in response to light and causes membrane hyperpolarization in hippocampal neurons, similar to the agonist-induced responses of the 5-HT(1A) receptor. The intracellular distribution of Rh-CT(5-HT1A) resembles that of the 5-HT(1A) receptor; Rh-CT(5-HT1A) localizes to somatodendritic sites and is efficiently trafficked to distal dendritic processes. Additionally, neuronal expression of Rh-CT(5-HT1A), but not Rh, decreases 5-HT(1A) agonist sensitivity, suggesting that Rh-CT(5-HT1A) and 5-HT(1A) receptors compete to interact with the same trafficking machinery. Finally, Rh-CT(5-HT1A) is able to rescue 5-HT(1A) signaling of 5-HT(1A) KO mice in cultured neurons and in slices of the dorsal raphe showing that Rh-CT(5-HT1A) is able to functionally compensate for native 5-HT(1A). Thus, as an optogenetic tool, Rh-CT(5-HT1A) has the potential to directly correlate in vivo 5-HT(1A) signaling with 5-HT neuron activity and behavior in both normal animals and animal models of neuropsychiatric disease.


Asunto(s)
Dendritas/metabolismo , Hipocampo/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Rodopsina/metabolismo , Animales , Línea Celular , Humanos , Trastornos Mentales/genética , Trastornos Mentales/metabolismo , Ratones , Ratones Noqueados , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Transporte de Proteínas , Ratas , Receptor de Serotonina 5-HT1A/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Rodopsina/genética
16.
Cereb Cortex ; 20(8): 1955-63, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20032063

RESUMEN

Growing evidence supports a major contribution of cortical serotonin (5-hydroxytryptamine, 5-HT) to the modulation of cognitive flexibility and the cognitive inflexibility evident in neuropsychiatric disorders. The precise role of 5-HT and the influence of 5-HT gene variation in mediating this process is not fully understood. Using a touch screen-based operant system, we assessed reversal of a pairwise visual discrimination as an assay for cognitive flexibility. Effects of constitutive genetic or pharmacological inactivation of the 5-HT transporter (5-HTT) on reversal were examined by testing 5-HTT null mice and chronic fluoxetine-treated C57BL/6J mice, respectively. Effects of constitutive genetic loss or acute pharmacological depletion of 5-HT were assessed by testing Pet-1 null mice and para-chlorophenylalanine (PCPA)-treated C57BL/6J mice, respectively. Fluoxetine-treated C57BL/6J mice made fewer errors than controls during the early phase of reversal when perseverative behavior is relatively high. 5-HTT null mice made fewer errors than controls in completing the reversal task. However, reversal in Pet-1 null and PCPA-treated C57BL/6J mice was not different from controls. These data further support an important role for 5-HT in modulating reversal learning and provide novel evidence that inactivating the 5-HTT improves this process. These findings could have important implications for understanding and treating cognitive inflexibility in neuropsychiatric disease.


Asunto(s)
Química Encefálica/genética , Silenciador del Gen/fisiología , Aprendizaje/fisiología , Plasticidad Neuronal/genética , Proteínas de Transporte de Serotonina en la Membrana Plasmática/genética , Animales , Química Encefálica/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Aprendizaje Discriminativo/efectos de los fármacos , Aprendizaje Discriminativo/fisiología , Regulación hacia Abajo/genética , Fenclonina/farmacología , Fluoxetina/farmacología , Silenciador del Gen/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Antagonistas de la Serotonina/farmacología , Proteínas de Transporte de Serotonina en la Membrana Plasmática/deficiencia , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
17.
Am J Physiol Regul Integr Comp Physiol ; 298(5): R1333-42, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20421636

RESUMEN

Neonatal rodents deficient in medullary serotonin neurons have respiratory instability and enhanced spontaneous bradycardias. This study asks if, in Pet-1(-/-) mice over development: 1) the respiratory instability leads to hypoxia; 2) greater bradycardia is related to the degree of hypoxia or concomitant hypopnea; and 3) hyperthermia exacerbates bradycardias. Pet-1(+/+), Pet-1(+/-), and Pet-1(-/-) mice [postnatal days (P) 4-5, P11-12, P14-15] were held at normal body temperature (T(b)) and were then made 2 degrees C hypo- and hyperthermic. Using a pneumotach-mask system with ECG, we measured heart rate, metabolic rate (Vo(2)), and ventilation. We also calculated indexes for apnea-induced hypoxia (total hypoxia: apnea incidence x O(2) consumed during apnea = microl.g(-1).min(-1)) and bradycardia (total bradycardia: bradycardia incidence x magnitude = beats missed/min). Resting heart rate was significantly lower in all Pet-1(-/-) animals, irrespective of T(b). At P4-5, Pet-1(-/-) animals had approximately four- to eightfold greater total bradycardia (P < 0.001), owing to an approximately two- to threefold increase in bradycardia magnitude and a near doubling in bradycardia incidence. Pet-1(-/-) animals had a significantly reduced Vo(2) at all T(b); thus there was no genotype effect on total hypoxia. At P11-12, total bradycardia was nearly threefold greater in hyperthermic Pet-1(-/-) animals compared with controls (P < 0.01). In both genotypes, bradycardia magnitude was positively related to the degree of hypopnea (P = 0.02), but there was no genotype effect on degree of hypopnea or total hypoxia. At P14-15, genotype had no effect on total bradycardia, but Pet-1(-/-) animals had up to seven times more total hypoxia (P < 0.001), owing to longer and more frequent apneas and a normalized Vo(2). We infer from these data that 1) Pet-1(-/-) neonates are probably not hypoxic from respiratory dysfunction until P14-15; 2) neither apnea-related hypoxia nor greater hypopnea contribute to the enhanced bradycardias of Pet-1(-/-) neonates from approximately P4 to approximately P12; and 3) an enhancement of a temperature-sensitive reflex may contribute to the greater bradycardia in hyperthermic Pet-1(-/-) animals at approximately P12.


Asunto(s)
Apnea/fisiopatología , Bradicardia/fisiopatología , Fiebre/fisiopatología , Insuficiencia Respiratoria/fisiopatología , Serotonina/deficiencia , Factores de Transcripción/genética , Animales , Animales Recién Nacidos , Apnea/genética , Apnea/patología , Tamaño Corporal/fisiología , Bradicardia/genética , Bradicardia/patología , Tronco Encefálico/anomalías , Modelos Animales de Enfermedad , Femenino , Fiebre/genética , Fiebre/patología , Genotipo , Frecuencia Cardíaca/fisiología , Humanos , Lactante , Masculino , Mesencéfalo/anomalías , Ratones , Ratones Mutantes , Insuficiencia Respiratoria/genética , Insuficiencia Respiratoria/patología , Muerte Súbita del Lactante , Factores de Transcripción/metabolismo
18.
J Neurosci ; 28(48): 12748-58, 2008 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-19036967

RESUMEN

Altered expression of the human FEV (fifth Ewing variant) ETS transcription factor gene impacts the level of CNS serotonin (5-HT) neuron gene expression and maternal nurturing. However, the regulatory mechanisms that determine FEV expression are poorly understood. Here, we investigated the cis-regulatory control of FEV to begin to identify the upstream transcription factors that restrict FEV expression to 5-HT neurons. We find that sequences extending only 275 bp upstream of the FEV 5' untranslated region are sufficient to direct FEV transgene expression to embryonic 5-HT neurons, although sequences farther upstream are required for maintenance in adult 5-HT neurons. Two highly conserved consensus GATA factor binding sites within the 275 bp region interact with GATA factors in vitro. Chromatin immunoprecipitations with embryonic hindbrain demonstrated Gata-2 interactions with the orthologous mouse Pet-1 ETS cis-regulatory region. Mutagenesis of GATA sites revealed that one or the other site is required for serotonergic FEV transgene expression. Unexpectedly, FEV-LacZ transgenes enabled determination of 5-HT neuron precursor fate in the adult Pet-1(-/-) dorsal and median raphe nuclei and thus provided additional insight into FEV/Pet-1 function. Comparable numbers of FEV-LacZ-positive cells were detected in Pet-1(+/-) and Pet-1(-/-) adult dorsal raphe nuclei, indicating that the majority of mutant serotonergic precursors are not fated to apoptosis. However, B7 dorsal raphe cells were aberrantly distributed, suggesting a role for FEV/Pet-1 in their midline organization. Our findings identify a direct transcriptional interaction between Gata-2 and FEV and a unique marker for new insight into FEV/Pet-1 function in 5-HT neuron development.


Asunto(s)
Proteínas de Unión al ADN/genética , Factores de Transcripción GATA/genética , Inmunoglobulinas/fisiología , Proteínas de la Membrana/fisiología , Neuronas/metabolismo , Proteínas Nucleares/genética , Serotonina/metabolismo , Células Madre/metabolismo , Factores de Transcripción/genética , Regiones no Traducidas 5'/genética , Animales , Apoptosis/genética , Tronco Encefálico/citología , Tronco Encefálico/embriología , Tronco Encefálico/metabolismo , Moléculas de Adhesión Celular , Factor de Transcripción GATA2/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes Reporteros/genética , Humanos , Inmunoglobulinas/genética , Operón Lac/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Neurogénesis/genética , Núcleos del Rafe/citología , Núcleos del Rafe/embriología , Núcleos del Rafe/metabolismo , Elementos Reguladores de la Transcripción/genética , Células Madre/citología , Transcripción Genética/genética
19.
J Neurosci ; 28(10): 2495-505, 2008 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-18322094

RESUMEN

Serotonergic neurons project widely throughout the CNS and modulate many different brain functions. Particularly important, but controversial, are the contributions of serotonin (5-HT) neurons to respiratory and thermoregulatory control. To better define the roles of 5-HT neurons in breathing and thermoregulation, we took advantage of a unique conditional knock-out mouse in which Lmx1b is genetically deleted in Pet1-expressing cells (Lmx1b(f/f/p)), resulting in near-complete absence of central 5-HT neurons. Here, we show that the hypercapnic ventilatory response in adult Lmx1b(f/f/p) mice was decreased by 50% compared with wild-type mice, whereas baseline ventilation and the hypoxic ventilatory response were normal. In addition, Lmx1b(f/f/p) mice rapidly became hypothermic when exposed to an ambient temperature of 4 degrees C, decreasing core temperature to 30 degrees C within 120 min. This failure of thermoregulation was caused by impaired shivering and nonshivering thermogenesis, whereas thermosensory perception and heat conservation were normal. Finally, intracerebroventricular infusion of 5-HT stimulated baseline ventilation, and rescued the blunted hypercapnic ventilatory response. These data identify a previously unrecognized role of 5-HT neurons in the CO(2) chemoreflex, whereby they enhance the response of the rest of the respiratory network to CO(2). We conclude that the proper function of the 5-HT system is particularly important under conditions of environmental stress and contributes significantly to the hypercapnic ventilatory response and thermoregulatory cold defense.


Asunto(s)
Regulación de la Temperatura Corporal/genética , Neuronas/fisiología , Respiración/genética , Serotonina/deficiencia , Serotonina/genética , Animales , Sistema Nervioso Central/fisiología , Células Quimiorreceptoras/fisiología , Ratones , Ratones Noqueados , Serotonina/biosíntesis
20.
Mol Cell Biol ; 26(15): 5636-49, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16847319

RESUMEN

The nicotinic acetylcholine receptor (nAChR) beta4/alpha3/alpha5 gene cluster encodes several heteromeric transmitter receptor subtypes that are essential for cholinergic synaptic transmission in adrenal gland, autonomic ganglia, pineal gland, and several nuclei in the central nervous system. However, the transcriptional mechanisms coordinating expression of these subunit genes in different cell populations are unknown. Here, we used transgenic methods to investigate long-range transcriptional control of the cluster. A 132-kb P1-derived artificial chromosome (PAC) encoding the rat cluster recapitulated the neurally- and endocrine-restricted expression patterns of the endogenous beta4/alpha3/alpha5 genes. Mutation of ETS factor binding sites in an enhancer, beta43', embedded in the beta4 3'-untranslated exon resulted in greatly diminished beta4, alpha3, and alpha5 expression in adrenal gland and to a lesser extent in the superior cervical ganglion (SCG) but not in other tissues. Phylogenetic sequence analyses revealed several conserved noncoding regions (CNRs) upstream of beta4 and alpha5. Deletion of one of them (CNR4) located 20 kb upstream of beta4 resulted in a dramatic decrease in beta4 and alpha3 expression in the pineal gland and SCG. CNR4 was sufficient to direct LacZ transgene expression to SCG neurons, which express the endogenous beta4alpha3alpha5 subunits, and pineal cells, which express the endogenous beta4alpha3 combination. Finally, CNR4 was able to direct transgene expression to major sites of expression of the endogenous cluster in the brain. Together, our findings support a model in which cell type-specific shared long-range regulatory elements are required for coordinate expression of clustered nAChR genes.


Asunto(s)
Familia de Multigenes , Isoformas de Proteínas , Receptores Nicotínicos , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Cromosomas Artificiales de los Mamíferos , Exones , Genes Reporteros , Humanos , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/fisiología , Glándula Pineal/citología , Glándula Pineal/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratas , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Alineación de Secuencia , Ganglio Cervical Superior/citología , Ganglio Cervical Superior/metabolismo , Distribución Tisular , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA