Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891991

RESUMEN

The testes serve as the primary source of androgens and the site of spermatogenesis, with their development and function governed by hormonal actions via endocrine and paracrine pathways. Male fertility hinges on the availability of testosterone, a cornerstone of spermatogenesis, while follicle-stimulating hormone (FSH) signaling is indispensable for the proliferation, differentiation, and proper functioning of Sertoli and germ cells. This review covers the research on how androgens, FSH, and other hormones support processes crucial for male fertility in the testis and reproductive tract. These hormones are regulated by the hypothalamic-pituitary-gonad (HPG) axis, which is either quiescent or activated at different stages of the life course, and the regulation of the axis is crucial for the development and normal function of the male reproductive system. Hormonal imbalances, whether due to genetic predispositions or environmental influences, leading to hypogonadism or hypergonadism, can precipitate reproductive disorders. Investigating the regulatory network and molecular mechanisms involved in testicular development and spermatogenesis is instrumental in developing new therapeutic methods, drugs, and male hormonal contraceptives.


Asunto(s)
Espermatogénesis , Testículo , Humanos , Masculino , Testículo/metabolismo , Testículo/crecimiento & desarrollo , Animales , Hormona Folículo Estimulante/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Andrógenos/metabolismo , Testosterona/metabolismo
2.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37628741

RESUMEN

The ovary is a highly susceptible organ to senescence, and granulosa cells (GCs) have a crucial role in oocyte development promotion and overall ovarian function maintenance. As age advances, GCs apoptosis and dysfunction escalate, leading to ovarian aging. However, the molecular mechanisms underpinning ovarian aging remain poorly understood. In this study, we observed a correlation between the age-related decline of fertility and elevated expression levels of miR-143-3p in female mice. Moreover, miR-143-3p was highly expressed in senescent ovarian GCs. The overexpression of miR-143-3p in GCs not only hindered their proliferation and induced senescence-associated secretory phenotype (SASP) but also impeded steroid hormone synthesis by targeting ubiquitin-conjugating enzyme E2 E3 (Ube2e3) and luteinizing hormone and human chorionic gonadotropin receptor (Lhcgr). These findings suggest that miR-143-3p plays a substantial role in senescence and steroid hormone synthesis in GCs, indicating its potential as a therapeutic target for interventions in the ovarian aging process.


Asunto(s)
Estradiol , MicroARNs , Humanos , Femenino , Animales , Ratones , Ovario , Receptores Acoplados a Proteínas G , Células de la Granulosa , Fenotipo Secretor Asociado a la Senescencia , MicroARNs/genética
3.
Cells ; 13(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38391926

RESUMEN

Due to the increasing trend of delayed childbirth, the age-related decline in male reproductive function has become a widely recognized issue. Sertoli cells (SCs) play a vital role in creating the necessary microenvironment for spermatogenesis in the testis. However, the mechanism underlying Sertoli cell aging is still unclear. In this study, senescent Sertoli cells showed a substantial upregulation of miR-143-3p expression. miR-143-3p was found to limit Sertoli cell proliferation, promote cellular senescence, and cause blood-testis barrier (BTB) dysfunction by targeting ubiquitin-conjugating enzyme E2 E3 (UBE2E3). Additionally, the TGF-ß receptor inhibitor SB431542 showed potential in alleviating age-related BTB dysfunction, rescuing testicular atrophy, and reversing the reduction in germ cell numbers by negatively regulating miR-143-3p. These findings clarified the regulatory pathways underlying Sertoli cell senescence and suggested a promising therapeutic approach to restore BTB function, alleviate Sertoli cell senescence, and improve reproductive outcomes for individuals facing fertility challenges.


Asunto(s)
MicroARNs , Células de Sertoli , Humanos , Masculino , Células de Sertoli/metabolismo , Barrera Hematotesticular/metabolismo , Testículo , MicroARNs/genética , MicroARNs/metabolismo , Senescencia Celular
4.
Antioxidants (Basel) ; 13(8)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39199247

RESUMEN

The epidermal barrier is vital for protecting the skin from environmental stressors and ultraviolet (UV) radiation. Filaggrin-2 (FLG2), a critical protein in the stratum corneum, plays a significant role in maintaining skin barrier homeostasis. However, the precise role of FLG2 in mitigating the adverse effects of UV-induced barrier disruption and photoaging remains poorly understood. In this study, we revealed that UVB exposure resulted in a decreased expression of FLG2 in HaCaT keratinocytes, which correlated with a compromised barrier function. The administration of recombinant filaggrin-2 (rFLG2) enhanced keratinocyte differentiation, bolstered barrier integrity, and offered protection against apoptosis and oxidative stress induced by UVB irradiation. Furthermore, in a UV-induced photodamage murine model, the dermal injection of rFLG2 facilitated the enhanced restoration of the epidermal barrier, decreased oxidative stress and inflammation, and mitigated the collagen degradation that is typical of photoaging. Collectively, our findings suggested that targeting FLG2 could be a strategic approach to prevent and treat skin barrier dysfunction and combat the aging effects associated with photoaging. rFLG2 emerges as a potentially viable therapy for maintaining skin health and preventing skin aging processes amplified by photodamage.

5.
Int J Biol Macromol ; 281(Pt 1): 136064, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39341309

RESUMEN

The integrity of the skin barrier is essential for maintaining skin health, with the stratum corneum and filaggrin 2 (FLG-2) playing a key role. FLG-2 deficiency or mutation has been linked to diseases such as atopic dermatitis, while external stressors such as ultraviolet B (UVB) radiation further damage the epidermal barrier. This study investigated the effects of recombinant filaggrin (rFLG) on skin barrier function and UVB induced epidermal destruction. Cell experiments showed that 10 µg/mL of rFLG could increase the mobility of HaCaT cells from 20 % to 42 %, increase the epithelial resistance (TEER) value by about 2 times, and up-regulate the tight junction associated protein by about 2 times. In mouse models of UVB-induced epidermal barrier destruction, rFLG at concentrations of 0.5, 1, and 2 mg/mL showed effective cell uptake and skin penetration, alleviating erythema, and reducing skin thickness in mice by 1.5-3 times. Among them, 2 mg/mL of rFLG treatment restored the expression of tight junction proteins (LOR, ZO-1, and caspase-14), reduced collagen degradation, and reduced oxidative stress by normalizing serum hydroxyproline and superoxide dismutase levels. In addition, 2 mg/mL of rFLG inhibited UVB-induced upregulation of matrix metalloproteinases (MMP-3 and MMP-9) and reduced pro-inflammatory factors (IL-10, IL-1α, IL-6, and TNF-α) and apoptotic markers (P38, Bax, and Bcl-2) to normal levels. These findings suggested that rFLG effectively enhanced skin barrier integrity and mitigated UVB-induced epidermal barrier destruction, highlighting its potential as a therapeutic agent for diseases associated with skin barrier dysfunction.

6.
Int J Biol Macromol ; 268(Pt 1): 131723, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38649072

RESUMEN

Endometrial injury poses a significant challenge in tissue regeneration, with type III collagen (COL III) playing a pivotal role in maintaining endometrial integrity and facilitating repair. Our study explored the utility of recombinant human type III collagen (RHC) as an intervention for endometrial damage. To address the challenges associated with the inherent instability and rapid degradation of COL III in vivo, we developed an RHC-HA hydrogel by conjugating RHC with hyaluronic acid (HA), thus ensuring a more stable and sustained delivery. Our findings suggested that the RHC-HA hydrogel significantly promoted endometrial regeneration and restored fertility. The hydrogel facilitated prolonged retention of RHC in the uterus, leading to a substantial improvement in the repair process. The synergistic interaction between RHC and HA greatly enhances cell proliferation and adhesion, surpassing the efficacy of HA or RHC alone. Additionally, the RHC-HA hydrogel demonstrated notable anti-fibrotic effects, which are crucial for preventing abnormalities during endometrial healing. These findings suggested that the RHC-HA hydrogel presented a therapeutic strategy in the treatment of uterine endometrial injuries, which may improve female reproductive health.


Asunto(s)
Colágeno Tipo III , Endometrio , Matriz Extracelular , Ácido Hialurónico , Hidrogeles , Proteínas Recombinantes , Regeneración , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Femenino , Endometrio/efectos de los fármacos , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/administración & dosificación , Animales , Colágeno Tipo III/metabolismo , Matriz Extracelular/efectos de los fármacos , Regeneración/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Materiales Biomiméticos/farmacología , Materiales Biomiméticos/química , Ratas , Adhesión Celular/efectos de los fármacos
7.
Mol Ther Nucleic Acids ; 32: 879-895, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37273781

RESUMEN

MicroRNAs (miRNAs) regulate various cellular functions, but their specific roles in the regulation of Leydig cells (LCs) have yet to be fully understood. Here, we found that the expression of miR-300-3p varied significantly during the differentiation from progenitor LCs (PLCs) to adult LCs (ALCs). High expression of miR-300-3p in PLCs inhibited testosterone production and promoted PLC proliferation by targeting the steroidogenic factor-1 (Sf-1) and transcription factor forkhead box O1 (FoxO1) genes, respectively. As PLCs differentiated into ALCs, the miR-300-3p expression level significantly decreased, which promoted testosterone biosynthesis and suppressed proliferation of ALCs by upregulating SF-1 and FoxO1 expression. The LH/METTL3/SMURF2/SMAD2 cascade pathway controlled miR-300-3p expression, in which luteinizing hormone (LH) upregulated SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2) expression through methyltransferase like 3 (METTL3)-mediated Smurf2 N6-methyladenosine modification. The Smurf2 then suppressed miR-300 transcription by inhibiting SMAD family member 2 (SMAD2) binding to the promoter of miR-300. Notably, miR-300-3p was associated with an obesity-related testosterone deficiency in men and the inhibition of miR-300-3p effectively rescued testosterone deficiency in obese mice. These findings suggested that miR-300-3p plays a pivotal role in LC differentiation and function, and could be a promising diagnostic or therapeutic target for obesity-related testosterone deficiency.

8.
Antioxidants (Basel) ; 11(12)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36552521

RESUMEN

Cyclobutane pyrimidine dimers (CPDs) are the main mutagenic DNA photoproducts caused by ultraviolet B (UVB) radiation and represent the major cause of photoaging and skin carcinogenesis. CPD photolyase can efficiently and rapidly repair CPD products. Therefore, they are candidates for the prevention of photodamage. However, these photolyases are not present in placental mammals. In this study, we produced a recombinant photolyase-thymine (rPHO) from Thermus thermophilus (T. thermophilus). The rPHO displayed CPD photorepair activity. It prevented UVB-induced DNA damage by repairing CPD photoproducts to pyrimidine monomers. Furthermore, it inhibited UVB-induced ROS production, lipid peroxidation, inflammatory responses, and apoptosis. UVB-induced wrinkle formation, epidermal hyperplasia, and collagen degradation in mice skin was significantly inhibited when the photolyase was applied topically to the skin. These results demonstrated that rPHO has promising protective effects against UVB-induced photodamage and may contribute to the development of anti-UVB skin photodamage drugs and cosmetic products.

9.
Front Pharmacol ; 12: 706225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248648

RESUMEN

Background and Purpose: Temporal lobe epilepsy (TLE) is a common chronic neurological disease that is often invulnerable to anti-epileptic drugs. Increasing data have demonstrated that acetylcholine (ACh) and cholinergic neurotransmission are involved in the pathophysiology of epilepsy. Cytisine, a full agonist of α7 nicotinic acetylcholine receptors (α7nAChRs) and a partial agonist of α4ß2nAChRs, has been widely applied for smoking cessation and has shown neuroprotection in neurological diseases. However, whether cytisine plays a role in treating TLE has not yet been determined. Experimental Approach: In this study, cytisine was injected intraperitoneally into pilocarpine-induced epileptic rats for three weeks. Alpha-bungarotoxin (α-bgt), a specific α7nAChR antagonist, was used to evaluate the mechanism of action of cytisine. Rats were assayed for the occurrence of seizures and cognitive function by video surveillance and Morris water maze. Hippocampal injuries and synaptic structure were assessed by Nissl staining and Golgi staining. Furthermore, levels of glutamate, γ-aminobutyric acid (GABA), ACh, and α7nAChRs were measured. Results: Cytisine significantly reduced seizures and hippocampal damage while improving cognition and inhibiting synaptic remodeling in TLE rats. Additionally, cytisine decreased glutamate levels without altering GABA levels, and increased ACh levels and α7nAChR expression in the hippocampi of TLE rats. α-bgt antagonized the above-mentioned effects of cytisine treatment. Conclusion and Implications: Taken together, these findings indicate that cytisine exerted an anti-epileptic and neuroprotective effect in TLE rats via activation of α7nAChRs, which was associated with a decrease in glutamate levels, inhibition of synaptic remodeling, and improvement of cholinergic transmission in the hippocampus. Hence, our findings not only suggest that cytisine represents a promising anti-epileptic drug, but provides evidence of α7nAChRs as a novel therapeutic target for TLE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA