Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Virol ; 163(12): 3365-3371, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30187143

RESUMEN

A chimeric Newcastle disease virus (NDV) vector (NDV/AI4-TFHN) was constructed with the replacement of the ectodomains of the fusion and hemagglutinin-neuraminidase proteins by those from avian paramyxovirus type 2. The chimeric virus induced high antibody response in chickens pre-immunized with NDV. A recombinant vaccine candidate, NDV/AI4-TFHN-H9, expressing the hemagglutinin of H9N2 avian influenza virus, was generated, on the basis of the chimeric NDV vector mentioned above. The NDV/AI4-TFHN-H9 vaccine elicited H9-specific hemagglutination inhibition antibodies in chickens pre-immunized with NDV vaccine, and reduced the numbers of chickens shedding virus after H9N2 challenge. NDV/AI4-TFHN-H9 could serve as an alternative vaccine for the prevention of H9N2 infection in commercial poultry flocks.


Asunto(s)
Anticuerpos Antivirales/inmunología , Subtipo H9N2 del Virus de la Influenza A/inmunología , Gripe Aviar/prevención & control , Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/inmunología , Enfermedades de las Aves de Corral/prevención & control , Vacunas Virales/administración & dosificación , Animales , Pollos , Protección Cruzada , Pruebas de Inhibición de Hemaglutinación , Glicoproteínas Hemaglutininas del Virus de la Influenza/administración & dosificación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunización , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/inmunología , Gripe Aviar/virología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Vacunas Virales/genética , Vacunas Virales/inmunología
2.
Front Microbiol ; 10: 1659, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396181

RESUMEN

Newcastle disease virus (NDV), causative agent of Newcastle disease (ND), is one of the most devastating pathogens for poultry industry worldwide. MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by regulating mRNA translation efficiency or mRNA abundance through binding to mRNA directly. Accumulating evidence has revealed that cellular miRNAs can also affect virus replication by controlling host-virus interaction. To identify miRNA expression profile and explore the roles of miRNA during NDV replication, in this study, small RNA deep sequencing was performed of non-inoculated DF-1 cells (chicken embryo fibroblast cell line) and JS 5/05-infected cells collected at 6 and 12 h post infection (hereafter called mock' NDV-6 h, and NDV-12 h groups respectively). A total of 73 miRNAs of NDV-6 h group and 64miRNAs of NDV-12 h group were significantly differentially expressed (SDE) when compared with those in mock group. Meanwhile, 50 SDE miRNAs, including 48 up- and 2 down-regulated, showed the same expression patterns in NDV-6 h and NDV-12 h groups. qRT-PCR validation of 15 selected miRNAs' expression patterns was consistent with deep sequencing. To investigate the role of these SDE miRNAs in NDV replication, miRNA mimics and inhibitors were transfected into DF-1 cells followed by NDV infection. The results revealed that gga-miR-451 and gga-miR-199-5p promoted NDV replication while gga-miR-19b-3p and gga-miR-29a-3p inhibited NDV replication. Further function research demonstrated gga-miR-451 suppressed NDV-induced inflammatory response via targeting YWHAZ (tyrosine3-monooxygenase/tryptophan5-monooxygenase activation protein zeta). Overall, our study presented a global miRNA expression profile in DF-1 cells in response to NDV infection and verified the roles of some SDE miRNAs in NDV replication which will underpin further studies of miRNAs' roles between the host and the virus.

3.
Front Microbiol ; 10: 2006, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31507581

RESUMEN

Newcastle disease (ND), an acute and highly contagious avian disease caused by virulent Newcastle disease virus (NDV), often results in severe economic losses worldwide every year. Although it is clear that microRNAs (miRNAs) are implicated in modulating innate immune response to invading microbial pathogens, their role in host defense against NDV infection remains largely unknown. Our prior study indicates that gga-miR-19b-3p is up-regulated in NDV-infected DF-1 cells (a chicken embryo fibroblast cell line) and functions to suppress NDV replication. Here we report that overexpression of gga-miR-19b-3p promoted the production of NDV-induced inflammatory cytokines and suppressed NDV replication, whereas inhibition of endogenous gga-miR-19b-3p expression had an opposite effect. Dual-luciferase and gene expression array analyses revealed that gga-miR-19b-3p directly targets the mRNAs of ring finger protein 11 (RNF11) and zinc-finger protein, MYND-type containing 11 (ZMYND11), two negative regulators of nuclear factor kappa B (NF-κB) signaling, in DF-1 cells. RNF11 and ZMYND11 silencing by small interfering RNA (siRNA) induced NF-κB activity and inflammatory cytokine production, and suppressed NDV replication; whereas ectopic expression of these two proteins exhibited an opposite effect. Our study provides evidence that gga-miR-19b-3p activates NF-κB signaling by targeting RNF11 and ZMYND11, and that enhanced inflammatory cytokine production is likely responsible for the suppression of NDV replication.

4.
Virology ; 535: 218-226, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31325836

RESUMEN

Genotype S H9N2 viruses frequently donate their internal genes to facilitate the generation of novel influenza viruses, e.g., H5N6, H7N9, and H10N8, which have caused human infection. Genotype S was originated from the replacement of F/98-like M and PB2 genes of the genotype H with those from G1-like lineage. However, whether this gene substitution will influence the viral fitness of emerging influenza viruses remains unclear. We found that H5Nx and H7N9 viruses with G1-like PB2 or M gene exhibited higher virulence and replication than those with F/98-like PB2 or M in chickens. We also determined the functional significance of G1-like PB2 in conferring increased polymerase activity and improved nucleus transportation efficiency, and facilitated RNP nuclear export by G1-like M. Our results suggest that G1-like PB2 and M genes optimize viral fitness, and thus play a crucial role in the genesis of emerging influenza viruses that cause rising prevalence in chickens.


Asunto(s)
Aptitud Genética , Virus de la Influenza A/crecimiento & desarrollo , ARN Polimerasa Dependiente del ARN/metabolismo , Virus Reordenados/crecimiento & desarrollo , Proteínas de la Matriz Viral/metabolismo , Proteínas Virales/metabolismo , Animales , Pollos , Virus de la Influenza A/genética , Gripe Aviar/virología , ARN Polimerasa Dependiente del ARN/genética , Virus Reordenados/genética , Proteínas de la Matriz Viral/genética , Proteínas Virales/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA