Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Biol Chem ; 299(1): 102720, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36410440

RESUMEN

Cancer cells, including those of prostate cancer (PCa), often hijack intrinsic cell signaling to reprogram their metabolism. Part of this reprogramming includes the activation of de novo synthesis of fatty acids that not only serve as building blocks for membrane synthesis but also as energy sources for cell proliferation. However, how de novo fatty acid synthesis contributes to PCa progression is still poorly understood. Herein, by mining public datasets, we discovered that the expression of acetyl-CoA carboxylase alpha (ACACA), which encodes acetyl-CoA carboxylase 1 (ACC1), was highly expressed in human PCa. In addition, patients with high ACACA expression had a short disease-free survival time. We also reported that depletion of ACACA reduced de novo fatty acid synthesis and PI3K/AKT signaling in the human castration-resistant PCa (CRPC) cell lines DU145 and PC3. Furthermore, depletion of ACACA downregulates mitochondrial beta-oxidation, resulting in mitochondrial dysfunction, a reduction in ATP production, an imbalanced NADP+/NADPhydrogen(H) ratio, increased reactive oxygen species, and therefore apoptosis. Reduced exogenous fatty acids by depleting lipid or lowering serum supplementation exacerbated both shRNA depletion and pharmacological inhibition of ACACA-induced apoptosis in vitro. Collectively, our results suggest that inhibition of ectopic ACACA, together with suppression of exogenous fatty acid uptake, can be a novel strategy for treating currently incurable CRPC.


Asunto(s)
Acetil-CoA Carboxilasa , Ácidos Grasos , Mitocondrias , Neoplasias de la Próstata Resistentes a la Castración , Humanos , Masculino , Acetil-CoA Carboxilasa/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Línea Celular Tumoral
2.
Anal Chem ; 96(4): 1659-1667, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38238102

RESUMEN

Cancer-cell-specific fluorescent photosensitizers (PSs) are highly desired molecular tools for cancer ablation with minimal damage to normal cells. However, such PSs that can achieve cancer specification and ablation and a self-reporting manner concurrently are rarely reported and still an extremely challenging task. Herein, we have proposed a feasible strategy and conceived a series of fluorescent PSs based on simple chemical structures for identifying and killing cancer cells as well as monitoring the photodynamic therapy (PDT) process by visualizing the change of subcellular localization. All of the constructed cationic molecules could stain mitochondria in cancer cells, identify cancer cells specifically, and monitor cancer cell viability. Among these, IVP-Br has the strongest ability to produce ROS, which serves as a potent PS for specific recognition and killing of cancer cells. IVP-Br could translocate from mitochondria to the nucleolus during PDT, self-reporting the entire therapeutic process. Mechanism study confirms that IVP-Br with light irradiation causes cancer cell ablation via inducing cell cycle arrest, cell apoptosis, and autophagy. The efficient ablation of tumor through PDT induced by IVP-Br has been confirmed in the 3D tumor spheroid chip. Particularly, IVP-Br could discriminate cancer cells from white blood cells (WBCs), exhibiting great potential to identify circulating tumor cells (CTCs).


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Apoptosis , Mitocondrias/metabolismo , Colorantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Cell Mol Biol Lett ; 29(1): 7, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172670

RESUMEN

BACKGROUND: Parkinson's disease (PD) affects 1% of people over 60, and long-term levodopa treatment can cause side effects. Early diagnosis is of great significance in slowing down the pathological process of PD. Multiple pieces of evidence showed that non-coding RNAs (ncRNAs) could participate in the progression of PD pathology. Pyroptosis is known to be regulated by ncRNAs as a key pathological feature of PD. Therefore, evaluating ncRNAs and pyroptosis-related proteins in serum could be worthy biomarkers for early diagnosis of PD. METHODS: NcRNAs and pyroptosis/inflammation mRNA levels were measured with reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Luciferase assays were performed to confirm GSDME as a target of miR-675-5p and HMGB1 as a target of miR-1247-5p. In the serum of healthy controls (n = 106) and PD patients (n = 104), RT-qPCR was utilized to assess miR-675-5p, miR-1247-5p, and two related ncRNAs (circSLC8A1and lncH19) levels. The enzyme-linked immunosorbent assay measured serum levels of pyroptosis-related proteins in controls (n = 54) and PD patients (n = 70). RESULTS: Our data demonstrated that miR-675-5p and miR-1247-5p significantly changed in PD neuron and animal models. Overexpressed miR-675-5p or downregulated miR-1247-5p could regulate pyroptosis and inflammation in PD neuron models. Using the random forest algorithm, we constructed a classifier based on PD neuron-pyroptosis pathology (four ncRNAs and six proteins) having better predictive power than single biomarkers (AUC = 92%). Additionally, we verified the performance of the classifier in early-stage PD patients (AUC ≥ 88%). CONCLUSION: Serum pyroptosis-related ncRNAs and proteins could serve as reliable, inexpensive, and non-invasive diagnostic biomarkers for PD. LIMITATIONS: All participants were from the same region. Additionally, longitudinal studies in the aged population are required to explore the practical application value of the classifier.


Asunto(s)
MicroARNs , Enfermedad de Parkinson , Animales , Humanos , Anciano , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , MicroARNs/metabolismo , Piroptosis , Biomarcadores , Inflamación
4.
Mikrochim Acta ; 191(3): 165, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38416241

RESUMEN

A label-free immunoassay based on rolling circle amplification (RCA) and G-quadruplex/Thioflavin T (G4/ThT) is proposed to realize the sensitive detection of carboxy-terminal cross-linked fragment of type I collagen (CTX I) for bone loss. Under the optimal conditions, as low as 38.02 pg/mL of CTX I can be detected. To improve the detecting throughput and simplify the operation, a microfluidic chip was designed, fabricated, and used for CTX I detection based on the proposed assay. The detection can be completed with only a single on-chip magnetic separation step, which was easy to operate, less time-consuming, and has only low reagent consumption. The limit of detection was 131.83 pg/mL by observing with fluorescence microscope. With further improvement of detection equipment, the sensitivity of on-chip detection can be improved. It can be expected that the proposed RCA/G4/ThT immunoassay for sensitive and high-throughput automated detection of CTX I might be chosen as a potential analytical tool for clinical osteoporosis diagnosis and in-orbit bone loss detection.


Asunto(s)
G-Cuádruplex , Microfluídica , Benzotiazoles , Bioensayo
5.
J Asian Nat Prod Res ; 26(7): 858-864, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38572987

RESUMEN

A new triterpenoid saponin (1), along with five known compounds (2-6), was isolated from Bupleurum marginatum Wall. ex DC, of which compounds 2-4 were obtained for the first time from this plant. The structures were confirmed by the analysis of 1D, 2D NMR, and HR-ESIMS data, and comparison with previous spectral data. Anti-liver fibrotic activities of the isolates were determined as proliferation inhibition of LPS-induced activation of HSC-T6 in vitro.


Asunto(s)
Bupleurum , Saponinas , Triterpenos , Saponinas/farmacología , Saponinas/química , Saponinas/aislamiento & purificación , Bupleurum/química , Triterpenos/farmacología , Triterpenos/química , Triterpenos/aislamiento & purificación , Estructura Molecular , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/aislamiento & purificación , Cirrosis Hepática/tratamiento farmacológico , Lipopolisacáridos/farmacología , Animales , Resonancia Magnética Nuclear Biomolecular
6.
Angew Chem Int Ed Engl ; 63(28): e202405971, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38661248

RESUMEN

Aqueous soluble and stable Cu(I) molecular catalysts featuring a catenane ligand composed of two dicationic, mutually repelling but mechanically interlocked macrocycles are reported. The ligand interlocking not only fine-tunes the coordination sphere and kinetically stabilizes the Cu(I) against air oxidation and disproportionation, but also buries the hydrophobic portions of the ligands and prevents their dissociation which are necessary for their good water solubility and a sustained activity. These catenane Cu(I) complexes can catalyze the oxidative C-C coupling of indoles and tetrahydroisoquinolines in water, using H2O2 as a green oxidant with a good substrate scope. The successful use of catenane ligands in exploiting aqueous Cu(I) catalysis thus highlights the many unexplored potential of mechanical bond as a design element for exploring transition metal catalysis under challenging conditions.

7.
J Am Chem Soc ; 145(11): 6087-6099, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36853653

RESUMEN

Efficient O2 reduction reaction (ORR) for selective H2O generation enables advanced fuel cell technology. Nonprecious metal catalysts are viable and attractive alternatives to state-of-the-art Pt-based materials that are expensive. Cu complexes inspired by Cu-containing O2 reduction enzymes in nature are yet to reach their desired ORR catalytic performance. Here, the concept of mechanical interlocking is introduced to the ligand architecture to enforce dynamic spatial restriction on the Cu coordination site. Interlocked catenane ligands could govern O2 binding mode, promote electron transfer, and facilitate product elimination. Our results show that ligand interlocking as a catenane steers the ORR selectivity to H2O as the major product via the 4e- pathway, rivaling the selectivity of Pt, and boosts the onset potential by 130 mV, the mass activity by 1.8 times, and the turnover frequency by 1.5 fold as compared to the noninterlocked counterpart. Our Cu catenane complex represents one of the first examples to take advantage of mechanical interlocking to afford electrocatalysts with enhanced activity and selectivity. The mechanistic insights gained through this integrated experimental and theoretical study are envisioned to be valuable not just to the area of ORR energy catalysis but also with broad implications on interlocked metal complexes that are of critical importance to the general fields in redox reactions involving proton-coupled electron transfer steps.

8.
J Neurochem ; 165(3): 391-412, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36648213

RESUMEN

Depression in astronauts is one of the consequences of space flight effects, negatively impacting their work performances. Unfortunately, the underlying molecular mechanisms in space flight-induced depression are still unknown; however, various neuropsychiatric disorders reported that overexpressed NR2B-PSD-95-nNOS complex in the brain triggers various pathological pathways, and inhibiting NR2B-PSD-95-nNOS complex asserts antidepressant effects. Through our in silico analysis, we found that epigenetic regulator miR-445-3p targets PSD-95 and is hypothesized to down-regulate NR2B-PSD-95-nNOS complex to prevent neuronal damage associated with depression. Therefore, the present study is aimed to determine the novel insight of the miR-455-3p against the NR2B-PSD-95-nNOS complex in the neurobiology of space flight-induced depressive behavior. Using a simulated space environment complex model (SCSE) for 21 days, we induced depressive behavior in rats to analyze miR-455-3p expression and NR2B-PSD-95-nNOS complex in the cortex and hippocampus of the SCSE depressed rats through qRT-PCR and western blot analysis. Further, an in vitro microgravity model using rat hippocampus cell lines (RHNC) was utilized to identify the independent role of miR-455-3p on (1) NR2B-PSD-95-nNOS complex and TrKB-BDNF proteins, (2) oxidative stress, (3) nitric oxide level, (4) inflammatory cytokines, (5) mitochondrial biogenesis/ dynamics, and (6) cell survival. Our results showed that miR-455-3p regulates NR2B-PSD-95-nNOS complex in the SCSE depressed rats in opposite ways, with the cortex revealing a higher level of miR-455-3p and low-level NR2B-PSD-95-nNOS complex and the hippocampus showing down-regulated miR-455-3p and up-regulated NR2B-PSD-95-nNOS complex, indicating a region-specific change in the miR-455-3p and NR2B-PSD-95-nNOS complex in the SCSE depressed rats. Further RHNC results also confirmed down-regulated miR-455-3p and up-regulated NR2B-PSD-95-nNOS complex expression, similar to the findings in the hippocampus of SCSE rats, suggesting that microgravity influences miR-455-3p and associated changes. Additional investigations revealed that miR-455-3p targets PSD-95 and co-regulates NR2B-PSD-95-nNOS complex along with TrkB-BDNF signaling and exert protective effects against NR2B-PSD-95-nNOS complex, oxidative stress, nitric oxide, inflammatory cytokines, and mitochondrial defects, suggesting a valuable biomarker for devising depressive disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , MicroARNs , Ratas , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Óxido Nítrico/metabolismo , Hipocampo/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
9.
Small ; 19(52): e2304427, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37653590

RESUMEN

As an ideal in vitro model, brain-on-chip (BoC) is an important tool to comprehensively elucidate brain characteristics. However, the in vitro model for the definition scope of BoC has not been universally recognized. In this review, BoC is divided into brain cells-on-a- chip, brain slices-on-a-chip, and brain organoids-on-a-chip according to the type of culture on the chip. Although these three microfluidic BoCs are constructed in different ways, they all use microfluidic chips as carrier tools. This method can better meet the needs of maintaining high culture activity on a chip for a long time. Moreover, BoC has successfully integrated cell biology, the biological material platform technology of microenvironment on a chip, manufacturing technology, online detection technology on a chip, and so on, enabling the chip to present structural diversity and high compatibility to meet different experimental needs and expand the scope of applications. Here, the relevant core technologies, challenges, and future development trends of BoC are summarized.


Asunto(s)
Encéfalo , Microfluídica , Microfluídica/métodos , Organoides , Dispositivos Laboratorio en un Chip
10.
Small ; 19(2): e2205024, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36398604

RESUMEN

Mono-chemotherapy has significant side effects and unsatisfactory efficacy, limiting its clinical application. Therefore, a combination of multiple treatments is becoming more common in oncotherapy. Chemotherapy combined with the induction of ferroptosis is a potential new oncotherapy. Furthermore, polymeric nanoparticles (NPs) can improve the antitumor efficacy and decrease the toxicity of drugs. Herein, a polymeric NP, mPEG-b-PPLGFc@Dox, is synthesized to decrease the toxicity of doxorubicin (Dox) and enhance the efficacy of chemotherapy by combining it with the induction of ferroptosis. First, mPEG-b-PPLGFc@Dox is oxidized by endogenous H2 O2 and releases Dox, which leads to an increase of H2 O2 by breaking the redox balance. The Fe(II) group of ferrocene converts H2 O2 into ·OH, inducing subsequent ferroptosis. Furthermore, glutathione peroxidase 4, a biomarker of ferroptosis, is suppressed and the lipid peroxidation level is elevated in cells incubated with mPEG-b-PPLGFc@Dox compared to those treated with Dox alone, indicating ferroptosis induction by mPEG-b-PPLGFc@Dox. In vivo, the antitumor efficacy of mPEG-b-PPLGFc@Dox is higher than that of free Dox. Moreover, the loss of body weight in mice treated mPEG-b-PPLGFc@Dox is lower than in those treated with free Dox, indicating that mPEG-b-PPLGFc@Dox is less toxic than free Dox. In conclusion, mPEG-b-PPLGFc@Dox not only has higher antitumor efficacy but it reduces the damage to normal tissue.


Asunto(s)
Ferroptosis , Nanopartículas , Ratones , Animales , Metalocenos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Polietilenglicoles , Polímeros
11.
BMC Microbiol ; 23(1): 56, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869305

RESUMEN

BACKGROUND: Thermostable microorganisms are extremophiles. They have a special genetic background and metabolic pathway and can produce a variety of enzymes and other active substances with special functions. Most thermo-tolerant microorganisms from environmental samples have resisted cultivation on artificial growth media. Therefore, it is of great significance to isolate more thermo-tolerant microorganisms and study their characteristics to explore the origin of life and exploit more thermo-tolerant enzymes. Tengchong hot spring in Yunnan contains a lot of thermo-tolerant microbial resources because of its perennial high temperature. The ichip method was developed by D. Nichols in 2010 and can be used to isolate so-called "uncultivable" microorganisms from different environments. Here, we describe the first application of modified ichip to isolate thermo-tolerant bacteria from hot springs. RESULTS: In this study, 133 strains of bacteria belonging to 19 genera were obtained. 107 strains of bacteria in 17 genera were isolated by modified ichip, and 26 strains of bacteria in 6 genera were isolated by direct plating methods. 25 strains are previously uncultured, 20 of which can only be cultivated after being domesticated by ichip. Two strains of previously unculturable Lysobacter sp., which can withstand 85 °C, were isolated for the first time. Alkalihalobacillus, Lysobacter and Agromyces genera were first found to have 85 °C tolerance. CONCLUSION: Our results indicate that the modified ichip approach can be successfully applied in a hot spring environment.


Asunto(s)
Actinomycetales , Bacillaceae , Manantiales de Aguas Termales , China , Medios de Cultivo
12.
Arch Microbiol ; 205(8): 285, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37442830

RESUMEN

Culturing uncultured microorganisms is an important aspect of microbiology. Once cultured, these microorganisms can be a source of useful antibiotics, enzymes etc. In this study, we have designed a novel culturing chip (cChip) to facilitate the growth of uncultured aquatic bacterial community by concentrating the samples. cChip was optimized for microbial growth using known bacteria in the laboratory as a pre-experiment. Then microorganisms from a freshwater lake were concentrated and inoculated, before putting the inoculated cChip in a simulated lake environment and further sub-culturing on laboratory media. High-throughput sequencing and traditional culturing were also performed for comparison. These three methods were able to detect 265 genera of microorganisms in the sample, of which 78.87% were detected by high-throughput sequencing, 30.94% by cChip, while only 6.42% were obtained by traditional culture. Moreover, all microorganisms obtained by traditional culture were also cultured using the cChip. A total of 45 new strains were isolated from the cChip, and their 16S rRNA gene sequences were 91.35% to 98.7% similar to their closest relatives according to NCBI GenBank database. We conclude that the design and simple operation of cChip can improve the culture efficiency of traditional culture by almost 5 times. To the best of our knowledge, this is the first report comparing a novel culturing method with high-throughput sequencing data and traditional culturing of the same samples.


Asunto(s)
Bacterias , Filogenia , ARN Ribosómico 16S/genética
13.
Analyst ; 148(15): 3666-3676, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37431281

RESUMEN

Photoelectrochemical sensors have outstanding advantages including high sensitivity and miniaturization for outdoor use. Recently, perovskite quantum dots have attracted significant attention due to their high photoluminescence quantum yield. Nonetheless, there is still a strong need to improve their performance in challenging aqueous biological applications. In this paper, based on the molecularly imprinted polymer encapsulation of CsPbBr3 perovskite quantum dot/TiO2 inverse opal heterojunction structures, linear photoelectrochemical detection of cholesterol in aqueous solution was obtained without the involvement of an enzyme. The attenuation of photocurrent intensity under intermittent irradiation within 900 s (45 on/off cycles) was only 8.6%, demonstrating the superior stability of CsPbBr3 based sensor here. At the same time, the minimum detection limit of 1.22 × 10-9 mol L-1 in buffer conditions was lower than that reported for cholesterol photoelectric sensors. It has also been shown that the photoelectrochemical sensor of CsPbBr3 here outperformed that of CH3NH3PbBr3, which is another important member of the perovskite family. Finally, the proposed photoelectrochemical sensor platform was successfully applied in the determination of cholesterol in challenging serum with satisfactory recovery. The synergism among CsPbBr3 perovskite quantum dots, TiO2 inverse opal structure and imprinted polymer has led to greatly improved water stability, super selectivity and sensitivity, thus promoting the development of perovskite-based biological sensors.

14.
Int J Mol Sci ; 24(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36982513

RESUMEN

The drug efflux transporter permeability glycoprotein (P-gp) plays an important role in oral drug absorption and distribution. Under microgravity (MG), the changes in P-gp efflux function may alter the efficacy of oral drugs or lead to unexpected effects. Oral drugs are currently used to protect and treat multisystem physiological damage caused by MG; whether P-gp efflux function changes under MG remains unclear. This study aimed to investigate the alteration of P-gp efflux function, expression, and potential signaling pathway in rats and cells under different simulated MG (SMG) duration. The altered P-gp efflux function was verified by the in vivo intestinal perfusion and the brain distribution of P-gp substrate drugs. Results showed that the efflux function of P-gp was inhibited in the 7 and 21 day SMG-treated rat intestine and brain and 72 h SMG-treated human colon adenocarcinoma cells and human cerebral microvascular endothelial cells. P-gp protein and gene expression levels were continually down-regulated in rat intestine and up-regulated in rat brain by SMG. P-gp expression was regulated by the Wnt/ß-catenin signaling pathway under SMG, verified by a pathway-specific agonist and inhibitor. The elevated intestinal absorption and brain distribution of acetaminophen levels also confirmed the inhibited P-gp efflux function in rat intestine and brain under SMG. This study revealed that SMG alters the efflux function of P-gp and regulates the Wnt/ß-catenin signaling pathway in the intestine and the brain. These findings may be helpful in guiding the use of P-gp substrate drugs during spaceflight.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Ingravidez , Ratas , Humanos , Animales , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Vía de Señalización Wnt , Células Endoteliales/metabolismo , Intestinos , Encéfalo/metabolismo
15.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36768819

RESUMEN

As an energy storage technology, supercapacitors (SCs) have become an important part of many electronic systems because of their high-power density, long cycle life, and maintenance-free characteristics. However, the widespread development and use of electronics, including SCs, have led to the generation of a large amount of e-waste. In addition, achieving compatibility between stability and biodegradability has been a prominent challenge for implantable electronics. Therefore, environmentally friendly SCs based on polypyrrole (PPy)-stabilized polypeptide (FF) are demonstrated in this study. The fully degradable SC has a layer-by-layer structure, including polylactic acid/chitosan (PLA-C) support layers, current collectors (Mg), FF/PPy composite layers, and a polyvinyl alcohol/phosphate buffer solution (PVA/PBS) hydrogel. It has the advantages of being light, thin, flexible, and biocompatible. After 5000 cycles in air, the capacitance retention remains at up to 94.7%. The device could stably operate for 7 days in a liquid environment and completely degrade in vitro within 90 days without any adverse effect on the environment. This work has important implications for eco-friendly electronics and will have a significant impact on the implantable biomedical electronics.


Asunto(s)
Polímeros , Pirroles , Alcohol Polivinílico , Péptidos
16.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835077

RESUMEN

The progress of space science and technology has ushered in a new era for humanity's exploration of outer space. Recent studies have indicated that the aerospace special environment including microgravity and space radiation poses a significant risk to the health of astronauts, which involves multiple pathophysiological effects on the human body as well on tissues and organs. It has been an important research topic to study the molecular mechanism of body damage and further explore countermeasures against the physiological and pathological changes caused by the space environment. In this study, we used the rat model to study the biological effects of the tissue damage and related molecular pathway under either simulated microgravity or heavy ion radiation or combined stimulation. Our study disclosed that ureaplasma-sensitive amino oxidase (SSAO) upregulation is closely related to the systematic inflammatory response (IL-6, TNF-α) in rats under a simulated aerospace environment. In particular, the space environment leads to significant changes in the level of inflammatory genes in heart tissues, thus altering the expression and activity of SSAO and causing inflammatory responses. The detailed molecular mechanisms have been further validated in the genetic engineering cell line model. Overall, this work clearly shows the biological implication of SSAO upregulation in microgravity and radiation-mediated inflammatory response, providing a scientific basis or potential target for further in-depth investigation of the pathological damage and protection strategy under a space environment.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , Síndrome de Respuesta Inflamatoria Sistémica , Animales , Ratas , Amina Oxidasa (conteniendo Cobre)/metabolismo , Vuelo Espacial , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba , Ingravidez/efectos adversos
17.
Molecules ; 28(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37570729

RESUMEN

Nickel nanoparticles (NiNPs) have wide applications in industry and biomedicine due to their unique characteristics. The liver is the major organ responsible for nutrient metabolism, exogenous substance detoxification and biotransformation of medicines containing nanoparticles. Hence, it is urgent to further understand the principles and potential mechanisms of hepatic effects on NiNPs administration. In this study, we explored the liver impacts in male C57/BL6 mice through intraperitoneal injection with NiNPs at doses of 10, 20 and 40 mg/kg/day for 7 and 28 days. The results showed that NiNPs treatment increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and induced pathological changes in liver tissues. Moreover, hepatic triglyceride (TG) content and lipid droplet deposition identified via de novo lipogenesis (DNL) progression were enhanced after NiNPs injection. Additionally, sustained NiNPs exposure induced a remarkable hepatic inflammatory response, significantly promoted endoplasmic reticulum stress (ER stress) sensors Ire1α, Perk and Atf6, and activated the occurrence of liver cell apoptosis. Overall, the research indicated that NiNPs exposure induced liver injury and disturbance of lipid metabolism. These findings revealed the public hazard from extreme exposure to NiNPs and provided new information on biological toxicity and biosafety evaluation.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Nanopartículas , Ratones , Masculino , Animales , Níquel/toxicidad , Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Nanopartículas/toxicidad , Metabolismo de los Lípidos , Hígado/patología , Triglicéridos/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Estrés del Retículo Endoplásmico , Ratones Endogámicos C57BL
18.
Anal Bioanal Chem ; 414(29-30): 8299-8307, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36253476

RESUMEN

In this study, an E. coli biosensor based on modular green fluorescent protein and luxI/IuxR cycle amplification circuit was constructed for sensitive detection of bioavailable lysine. The results indicated that the luxI/IuxR positive feedback circuit based on quorum sensing can be used as a signal amplifier to improve the sensitivity to lysine detection with the detection limit of 256 nM. The presented method was more sensitive than the previously reported whole-cell fluorescent microbial biosensors. In addition, the developed E. coli biosensor was specific for lysine detection, and other amino acids and proteins did not cause any interference. The constructed genetic engineered biosensor was accurate for lysine detection, the lysine content of 6.87 ± 0.36% in tryptone was successfully measured, and after adding 10, 30, and 50 µM lysine in tryptone, the recoveries of 109.98 ± 10.44%, 103.88 ± 7.66%, and 105.89 ± 6.34% were obtained, respectively. Furthermore, as the design of the genetic engineered biosensor is modular, it can conceivably be utilized as a component in the design of more complex synthetic gene circuits without any changes to the amplifier and reporter system.


Asunto(s)
Técnicas Biosensibles , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Lisina , Técnicas Biosensibles/métodos , Transactivadores/metabolismo
19.
Appl Microbiol Biotechnol ; 106(4): 1663-1676, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35091764

RESUMEN

Understanding the effects of long-term exposure to space environment is paramount to maintaining the safety, health of astronauts. The physical dosimeters currently used on the space station cannot be used to assess the physiological effects of radiation. Moreover, some developed biological methods are time-consuming and passive and cannot be used for active and real-time detection of the physiological effects of radiation in space environment. Here, the SOS promoter: recA-eGFP genetic engineering bacteria was constructed and characterized, and DNA damage effects of some chemical reagents and radiation were evaluated. The results indicated the constructed engineering bacteria can distinguish DNA damage reagents from non-damage reagents and have a good dose-fluorescence effect against Co-60 radiation with the detection limit of 0.64 Gy; in order to overcome the restriction of long-term preservation of bacteria in space environment, the bacteria were freeze-dried, and the protectants were optimized, the storage time of bacteria under dry conditions was explored by accelerated storage experiment. Finally, a microfluidic chip was designed and fabricated for freeze-drying genetic engineering bacteria recovery, culture, and analysis in space environment. This study can provide support for the establishment of on-orbit radiation damage risk monitoring and early warning and can provide basic data for maintaining the health and performance of astronauts on long-term space flight missions. Moreover, the technique developed herein has a great potential to be used as a powerful tool for efficiently screening various radioactive substance, toxic chemicals, drugs, etc. KEY POINTS: • The SOS promoter: recA-eGFP genetic engineering bacteria was successfully constructed, which can distinguish DNA damage reagents from non-damage reagents and possess a good dose-effect relationship against Co-60 radiation. • The bacteria were freeze-dried to overcome the restriction of long-term preservation of bacteria in space environment, and protectants were optimized, and the survival rate of freeze-dried engineering bacteria can be predicted based on the results of accelerated storage experiment. • Microfluidic chip-based culture platform was successfully designed, fabricated, and used for freeze-drying genetic engineering bacteria recovery, culture, and analysis.


Asunto(s)
Microfluídica , Vuelo Espacial , Astronautas , Bacterias/genética , Daño del ADN , Humanos
20.
Biomed Chromatogr ; 36(11): e5464, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35899750

RESUMEN

Neuroinflammatory injury is one of the typical brain injuries after the body is exposed to radiation. It is mainly characterized by the release of inflammatory factors by activated microglia and peripherally invading lymphocytes. To provide early warning for nerve injury and early diagnosis of neurodegenerative diseases, it is of great significance to explore the biomarker candidates of neuroinflammatory injury. This study focused on the screening of small molecular biomarker candidates in peripheral blood from rats with neuroinflammatory injury induced by whole-brain irradiation. The rats were exposed to 0, 10, 10 × 3, and 30 Gy of cobalt-60 γ-rays. Serum was collected on the 30th day after exposure and analyzed using reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography coupled with high-resolution mass spectrometry based on untargeted metabolomics. Biomarker candidates were investigated by comparing the 0-Gy group and three irradiation groups using univariate statistical analysis, principal component analysis, and orthogonal partial least squares discriminant analysis. Eleven biomarker candidates were putatively identified, and four major altered metabolic pathways were found. The screened small molecular biomarker candidates could be used as a useful supplement to traditional biomacromolecule markers and may be valuable for radiation protection, target therapy of inflammatory injury, and discovery of new target drugs for the prevention and cure of related neurodegenerative diseases.


Asunto(s)
Encéfalo , Metabolómica , Animales , Biomarcadores , Encéfalo/metabolismo , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA