Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Mol Med ; 26(9): 2673-2685, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35322916

RESUMEN

TRIP13 is a member of the large superfamily of the AAA + ATPase proteins and is associated with a variety of activities. Emerging evidence has shown that TRIP13 may serve as an oncogene. However, the function of TRIP13 in breast cancer (BC) has not yet been elucidated. Here, a variety of bioinformatic tools and laboratory experiments were combined to analyse the expression patterns, prognostic value and functional network of TRIP13 in BC. Multiple databases and immunohistochemistry (IHC) indicated a higher TRIP13 expression in BC tissue compared with normal tissue. TRIP13 was highly expressed in lung metastatic lesions compared with primary tumours in a 4T1 cell implantation BALB/c mouse model of BC. Kaplan-Meier plots also revealed that high TRIP13 expression correlated with poor survival in patients with BC. Furthermore, gene set enrichment analysis revealed that TRIP13 was primarily enriched in the signalling pathway of PI3K-AKT-mTOR. Suppressing TRIP13 could inhibit the expression of related genes, as well as the proliferation and migration of BC cell. Finally, 10 hub genes with a high score of connectivity were filtered from the protein-protein interaction (PPI) network, including MAD2L1, CDC20, CDC5L, CDK1, CCNA2, BUB1B, RAD51, SPO11, KIF11 and AURKB. Thus, TRIP13 may be a promising prognostic biomarker and an effective therapeutic target for BC.


Asunto(s)
Neoplasias de la Mama , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/genética
2.
Cancer Cell Int ; 19: 264, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632198

RESUMEN

BACKGROUND: Centromere Protein F (CENPF) associates with the centromere-kinetochore complex and influences cell proliferation and metastasis in several cancers. The role of CENPF in breast cancer (BC) bone metastasis remains unclear. METHODS: Using the ONCOMINE database, we compared the expression of CENPF in breast cancer and normal tissues. Findings were confirmed in 60 BC patients through immunohistochemical (IHC) staining. Microarray data from GEO and Kaplan-Meier plots were used analyze the overall survival (OS) and relapse free survival (RFS). Using the GEO databases, we compared the expression of CENPF in primary lesions, lung metastasis lesions and bone metastasis lesions, and validated our findings in BALB/C mouse 4T1 BC models. Based on gene set enrichment analysis (GSEA) and western blot, we predicted the mechanisms by which CENPF regulates BC bone metastasis. RESULTS: The ONCOMINE database and immunohistochemical (IHC) showed higher CENPF expression in BC tissue compared to normal tissue. Kaplan-Meier plots also revealed that high CENPF mRNA expression correlated to poor survival and shorter progression-free survival (RFS). From BALB/C mice 4T1 BC models and the GEO database, CENPF was overexpressed in primary lesions, other target organs, and in bone metastasis. Based on gene set enrichment analysis (GSEA) and western blot, we predicted that CENPF regulates the secretion of parathyroid hormone-related peptide (PTHrP) through its ability to activate PI3K-AKT-mTORC1. CONCLUSION: CENPF promotes BC bone metastasis by activating PI3K-AKT-mTORC1 signaling and represents a novel therapeutic target for BC treatment.

3.
Cancer Manag Res ; 16: 629-638, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881789

RESUMEN

Background: Guanine-rich RNA sequence binding factor 1 (GRSF1), part of the RNA-binding protein family, is now attracting interest due to its potential association with the progression of a variety of human cancers. The precise contribution and molecular mechanism of GRSF1 to colorectal cancer (CRC) progression, however, have yet to be clarified. Methods: Immunohistochemistry and Western Blot analysis was carried out to detect the expression of GRSF1 in CRC at both mRNA and protein levels and its subsequent effects on prognosis. A series of functional tests were performed to understand its influence on proliferation, migration, and invasion of CRC cells. Results: The universal downregulation of GRSF1 in CRC was identified, indicating a correlation with poor prognosis. Our functional studies unveiled that the elimination of GRSF1 enhances tumour activities such as proliferation, migration, and invasion of CRC cells, while GRSF1 overexpression curtailed these abilities. Conclusion: Notably, we uncovered that GRSF1 insufficiency modulates the PI3K/Akt signaling pathway and Ras activation in CRC. Therefore, our data suggest GRSF1 operates as a tumor suppressor gene in CRC and may offer promise as a potential biomarker and novel therapeutic target in CRC management.

4.
Pathol Res Pract ; 238: 154115, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36084427

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common cancers, and has an extremely poor prognosis. Our previous study confirmed that the microRNA miR-361-5p inhibited the proliferation, metastasis, invasiveness, and epithelial-to-mesenchymal transition (EMT) process of HCC by targeting the transcription factor Twist1. Long non-coding RNAs (lncRNAs) are key regulators of processes such as cell differentiation, inflammation, tumor formation, and immune escape. However, the underlying interactions between the lncRNA LINC00992, miR-361-5p, and Twist1 in HCC progression is still elusive. In the current study, the DIANA-lncBase database was used to identify regulatory genes upstream of miR-361-5p. Reverse transcription-quantitative PCR (RT-qPCR) was used to quantify the expression of the genes encoding LINC00992, miR-361-5p, and Twist1 in HCC cells. The cell counting kit-8 (CCK-8) was used to measure HCC cell proliferation and Transwell was used to measure HCC cell migration and invasion. The dual-luciferase reporter assay and RNA pull-down assay were performed to examine the interaction between LINC00992 and miR-361-5p. Western blotting was used to detect the levels of Twist1 protein. The result confirmed that, among three lncRNAs tested, miR-361-5p was the one most significantly affected by LINC00992. RT-qPCR revealed that LINC00992 was highly expressed in HCC tissues and cells. The follow-up results showed that the expression of LINC00992 and miR-361-5p in HCC tissues were closely correlated with the rate of metastasis or recurrence of the HCC patients. Our result showed that the expression of miR-361-5p was lower in the LINC00992 (+) group than in the LINC00992 (-) group. CCK-8 and Transwell showed that LINC00992 promoted HCC cell proliferation, migration, and invasion, whereas dual-luciferase reporter assay and RNA pull-down assay showed that LINC00992 combined with miR-361-5p to act as a miRNA decoy in HCC. RT-qPCR and Western blotting confirmed that LINC00992 upregulated the expression of the Twist1 gene in HCC cells by downregulating expression of miR-361-5p. CCK-8 and Transwell assays confirmed that LINC00992 promoted the proliferation, metastasis, and invasiveness of HCC cells by downregulating miR-361-5p levels and consequently upregulating Twist1 expression, implying that these three elements may be promising targets for HCC therapy.

5.
Oncol Rep ; 46(5)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34549306

RESUMEN

Colorectal cancer (CRC) is a common malignancy with significant prevalence and mortality rates. Circular RNA FOXO3 (circ­FOXO3; hsa_circ_0006404) has been reported to be involved in cancer regulation; however, its role in CRC is yet to be fully elucidated. Therefore, the aim of the present study was to investigate the effect of circ­FOXO3 on CRC progression and identify its underlying mechanism. In the present study, the expression of circ­FOXO3 was investigated in CRC tissues and cells via reverse transcription­quantitative PCR. A Cell Counting Kit­8 and colony formation assays were used to assess cell proliferation. The cell migratory and invasive abilities were detected using the Transwell migration and invasion assays. The luciferase assay and RNA pull­down assay were conducted to verify the relationship of circ­FOXO3, microRNA (miR)­543 and Large tumor suppressor kinase 1 (LATS1). The results demonstrated that circ­FOXO3 expression was downregulated in CRC tissues and cells, and was associated with poor overall survival of patients with CRC. Moreover, circ­FOXO3 was associated with tumor size, distant metastasis, differentiation, lymph node metastasis and TMN stages of patients with CRC. circ­FOXO3 overexpression suppressed CRC cell proliferation, migration and invasion. Luciferase assay and RNA pull­down assay results indicated that circ­FOXO3 functioned as a sponge for miR­543. In addition, circ­FOXO3 increased the expression of LATS1 via sponging miR­543, thus inhibiting CRC cell aggressive features. Collectively, the present results suggested that circ­FOXO3 inhibited CRC metastasis and progression via elevated LATS1 expression by sponging miR­543. Therefore, circ­FOXO3 may be a promising target for CRC therapy.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Proteína Forkhead Box O3/metabolismo , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Adulto , Anciano , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación hacia Abajo , Femenino , Humanos , Masculino , Persona de Mediana Edad
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(5): 591-597, 2019 May 30.
Artículo en Zh | MEDLINE | ID: mdl-31140425

RESUMEN

OBJECTIVE: To investigate the expression of the cell division- associated gene NUF2 in breast cancer and its clinical significance. METHODS: The expression of NUF2 in breast cancer tissues was analyzed using Oncomine database. The relationship between the expression of NUF2 and the prognosis of breast cancer was analyzed using the Kaplan-Meier Plotter database. Gene set enrichment analysis (GSEA) and GEO database were used to investigate the effect of NUF2 on gene enrichment. The String database was utilized to analyze the proteins associated with NUF2. The TIMER database was analyzed to assess the correlations of NUF2 with BUB1, MAD2L1 and MYC. The expressions of NUF2 mRNA in 8 pairs of breast cancer tissues and adjacent tissues were verified by q-PCR. RESULTS: Compared with that in normal breast tissue, NUF2 was significantly overexpressed in breast cancer (P < 0.001). The overall survival time (HR = 1.52, P = 0.015) and the recurrence-free survival time (HR = 1.85, P = 3.2e-14) of the patients with high NUF2 expression were significantly shorter than those of patients with low NUF2 expression. In patients with high NUF2 expression, the enriched genes were involved mainly in cell cycle, P53, G2/M, DNA repair, MYC, and PI3K-AKT-MTOR signaling pathways, which were associated with tumor proliferation, invasion, metastasis and stemness. Combination of the results of String database, gene enrichment and TIMER database analyses suggested that NUF2 interacted directly with BUB1, MAD2L1, and MYC, which could promote the progression of breast cancer. The results of q-PCR showed that NUF2 expression was up-regulated in 6 cancer tissues and down-regulated in 2 cancer tissues. CONCLUSIONS: NUF2 gene is overexpressed in breast cancer, and its expression level is important in predicting the prognosis of breast cancer.


Asunto(s)
Neoplasias de la Mama , Proteínas de Ciclo Celular , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Fosfatidilinositol 3-Quinasas , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA