Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 36(26): e2402008, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38511531

RESUMEN

Sodium-ion batteries (SIBs) have garnered significant attention as ideal candidates for large-scale energy storage due to their notable advantages in terms of resource availability and cost-effectiveness. However, there remains a substantial energy density gap between SIBs and commercially available lithium-ion batteries (LIBs), posing challenges to meeting the requirements of practical applications. The fabrication of high-energy cathodes has emerged as an efficient approach to enhancing the energy density of SIBs, which commonly requires cathodes operating in high-voltage regions. Layered oxide cathodes (LOCs), with low cost, facile synthesis, and high theoretical specific capacity, have emerged as one of the most promising candidates for commercial applications. However, LOCs encounter significant challenges when operated in high-voltage regions such as irreversible phase transitions, migration and dissolution of metal cations, loss of reactive oxygen, and the occurrence of serious interfacial parasitic reactions. These issues ultimately result in severe degradation in battery performance. This review aims to shed light on the key challenges and failure mechanisms encountered by LOCs when operated in high-voltage regions. Additionally, the corresponding strategies for improving the high-voltage stability of LOCs are comprehensively summarized. By providing fundamental insights and valuable perspectives, this review aims to contribute to the advancement of high-energy SIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA