Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 14(3): 1300-5, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24502255

RESUMEN

In this work, we report on the composition, short- and long-range structural order of single molecular beam epitaxy grown In(x)Ga(1-x)N nanowires using a hard X-ray synchrotron nanoprobe. Nano-X-ray fluorescence mapping reveals an axial and radial heterogeneous elemental distribution in the single wires with Ga accumulation at their bottom and outer regions. Polarization-dependent nano-X-ray absorption near edge structure demonstrates that despite the elemental modulation, the tetrahedral order around the Ga atoms remains along the nanowires. Nano-X-ray diffraction mapping on single nanowires shows the existence of at least three different phases at their bottom: an In-poor shell and two In-rich phases. The alloy homogenizes toward the top of the wires, where a single In-rich phase is observed. No signatures of In-metallic precipitates are observed in the diffraction spectra. The In-content along the single nanowires estimated from X-ray fluorescence and diffraction data are in good agreement. A rough picture of these phenomena is briefly presented. We anticipate that this methodology will contribute to a greater understanding of the underlying growth concepts not only of nanowires but also of many nanostructures in materials science.


Asunto(s)
Nanocables/química , Nanocables/ultraestructura , Sincrotrones , Galio/química , Indio/química , Rayos X
2.
Nanotechnology ; 25(7): 075705, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24457628

RESUMEN

The elemental distribution of self-organized In-rich In(x)Ga1-xN nanowires grown by plasma-assisted molecular beam epitaxy has been investigated using three different techniques with spatial resolution on the nanoscale. Two-dimensional images and elemental profiles of single nanowires obtained by x-ray fluorescence and energy-dispersive x-ray spectroscopy, respectively, have revealed a radial gradient in the alloy composition of each individual nanowire. The spectral selectivity of resonant Raman scattering has been used to enhance the signal from very small volumes with different elemental composition within single nanowires. The combination of the three techniques has provided sufficient sensitivity and spatial resolution to prove the spontaneous formation of a core­shell nanowire and to quantify the thicknesses and alloy compositions of the core and shell regions. A theoretical model based on continuum elastic theory has been used to estimate the strain fields present in such inhomogeneous nanowires. These results suggest new strategies for achieving high quality nonpolar heterostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA