Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2321193121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38954549

RESUMEN

Iron antimonide (FeSb2) has been investigated for decades due to its puzzling electronic properties. It undergoes the temperature-controlled transition from an insulator to an ill-defined metal, with a cross-over from diamagnetism to paramagnetism. Extensive efforts have been made to uncover the underlying mechanism, but a consensus has yet to be reached. While macroscopic transport and magnetic measurements can be explained by different theoretical proposals, the essential spectroscopic evidence required to distinguish the physical origin is missing. In this paper, through the use of X-ray absorption spectroscopy and atomic multiplet simulations, we have observed the mixed spin states of 3d 6 configuration in FeSb2. Furthermore, we reveal that the enhancement of the conductivity, whether induced by temperature or doping, is characterized by populating the high-spin state from the low-spin state. Our work constitutes vital spectroscopic evidence that the electrical/magnetical transition in FeSb2 is directly associated with the spin-state excitation.

2.
Proc Natl Acad Sci U S A ; 118(47)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34789576

RESUMEN

Complex electronic phases in strongly correlated electron systems are manifested by broken symmetries in the low-energy electronic states. Some mysterious phases, however, exhibit intriguing energy gap opening without an apparent signature of symmetry breaking (e.g., high-TC cuprates and heavy fermion superconductors). Here, we report an unconventional gap opening in a heterostructured, iron-based superconductor Sr2VO3FeAs across a phase transition at T 0 ∼150 K. Using angle-resolved photoemission spectroscopy, we identify that a fully isotropic gap opens selectively on one of the Fermi surfaces with finite warping along the interlayer direction. This band selectivity is incompatible with conventional gap opening mechanisms associated with symmetry breaking. These findings, together with the unusual field-dependent magnetoresistance, suggest that the Kondo-type proximity coupling of itinerant Fe electrons to localized V spin plays a role in stabilizing the exotic phase, which may serve as a distinct precursor state for unconventional superconductivity.

3.
Nano Lett ; 23(17): 7961-7967, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37624091

RESUMEN

We report on the Tomonaga-Luttinger liquid (TLL) behavior in fully degenerate 1D Dirac Fermions. A ternary van der Waals material Nb9Si4Te18 incorporates in-plane NbTe2 chains, which produce a 1D Dirac band crossing Fermi energy. Tunneling conductance of electrons confined within NbTe2 chains is found to be substantially suppressed at Fermi energy, which follows a power law with a universal temperature scaling, hallmarking a TLL state. The obtained Luttinger parameter of ∼0.15 indicates a strong electron-electron interaction. The TLL behavior is found to be robust against atomic-scale defects, which might be related to the Dirac electron nature. These findings, combined with the tunability of the compound and the merit of a van der Waals material, offer a robust, tunable, and integrable platform to exploit non-Fermi liquid physics.

4.
Nano Lett ; 23(24): 11526-11532, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38079244

RESUMEN

Fe3GaTe2, a recently discovered van der Waals ferromagnet, demonstrates intrinsic ferromagnetism above room temperature, necessitating a comprehensive investigation of the microscopic origins of its high Curie temperature (TC). In this study, we reveal the electronic structure of Fe3GaTe2 in its ferromagnetic ground state using angle-resolved photoemission spectroscopy and density functional theory calculations. Our results establish a consistent correspondence between the measured band structure and theoretical calculations, underscoring the significant contributions of the Heisenberg exchange interaction (Jex) and magnetic anisotropy energy to the development of the high-TC ferromagnetic ordering in Fe3GaTe2. Intriguingly, we observe substantial modifications to these crucial driving factors through doping, which we attribute to alterations in multiple spin-splitting bands near the Fermi level. These findings provide valuable insights into the underlying electronic structure and its correlation with the emergence of high-TC ferromagnetic ordering in Fe3GaTe2.

5.
Nano Lett ; 23(1): 380-388, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36382909

RESUMEN

Glide-mirror symmetry in nonsymmorphic crystals can foster the emergence of novel hourglass nodal loop states. Here, we present spectroscopic signatures from angle-resolved photoemission of a predicted topological hourglass semimetal phase in Nb3SiTe6. Linear band crossings are observed at the zone boundary of Nb3SiTe6, which could be the origin of the nontrivial Berry phase and are consistent with a predicted glide quantum spin Hall effect; such linear band crossings connect to form a nodal loop. Furthermore, the saddle-like Fermi surface of Nb3SiTe6 observed in our results helps unveil linear band crossings that could be missed. In situ alkali-metal doping of Nb3SiTe6 also facilitated the observation of other band crossings and parabolic bands at the zone center correlated with accidental nodal loop states. Overall, our results complete the system's band structure, help explain prior Hall measurements, and suggest the existence of a nodal loop at the zone center of Nb3SiTe6.

6.
Nano Lett ; 23(21): 9733-9739, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37903092

RESUMEN

We report the synthesis of ethylenediamine-intercalated NbSe2 and Li-ethylenediamine-intercalated MoSe2 single crystals with increased interlayer distances and their electronic structures measured by means of angle-resolved photoemission spectroscopy (ARPES). X-ray diffraction patterns and transmission electron microscopy images confirm the successful intercalation and an increase in the interlayer distance. ARPES measurement reveals that intercalated NbSe2 shows an electronic structure almost identical to that of monolayer NbSe2. Intercalated MoSe2 also returns the characteristic feature of the monolayer electronic structure, a direct band gap, which generates sizable photoluminescence even in the bulk form. Our results demonstrate that the properties and phenomena of the monolayer transition metal dichalcogenides can be achieved with large-scale bulk samples by blocking the interlayer interaction through intercalation.

7.
Nat Mater ; 21(11): 1269-1274, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36175520

RESUMEN

Purely quantum electron systems exhibit intriguing correlated electronic phases by virtue of quantum fluctuations in addition to electron-electron interactions. To realize such quantum electron systems, a key ingredient is dense electrons decoupled from other degrees of freedom. Here, we report the discovery of a pure quantum electron liquid that spreads up to ~3 Å in a vacuum on the surface of an electride crystal. Its extremely high electron density and weak hybridization with buried atomic orbitals show the quantum and pure nature of the electrons, which exhibit a polarized liquid phase, as demonstrated by our spin-dependent measurement. Furthermore, upon enhancing the electron correlation strength, the dynamics of the quantum electrons change to that of a non-Fermi liquid along with an anomalous band deformation, suggestive of a transition to a hexatic liquid crystal phase. Our findings develop the frontier of quantum electron systems and serve as a platform for exploring correlated electronic phases in a pure fashion.

8.
Phys Rev Lett ; 130(6): 066402, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36827563

RESUMEN

Novel topological phases of matter are fruitful platforms for the discovery of unconventional electromagnetic phenomena. Higher-fold topology is one example, where the low-energy description goes beyond standard model analogs. Despite intensive experimental studies, conclusive evidence remains elusive for the multigap topological nature of higher-fold chiral fermions. In this Letter, we leverage a combination of fine-tuned chemical engineering and photoemission spectroscopy with photon energy contrast to discover the higher-fold topology of a chiral crystal. We identify all bulk branches of a higher-fold chiral fermion for the first time, critically important for allowing us to explore unique Fermi arc surface states in multiple interband gaps, which exhibit an emergent ladder structure. Through designer chemical gating of the samples in combination with our measurements, we uncover an unprecedented multigap bulk boundary correspondence. Our demonstration of multigap electronic topology will propel future research on unconventional topological responses.

9.
Nat Mater ; 20(12): 1643-1649, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34608283

RESUMEN

Magnetism and spin-orbit coupling are two quintessential ingredients underlying topological transport phenomena in itinerant ferromagnets. When spin-polarized bands support nodal points/lines with band degeneracy that can be lifted by spin-orbit coupling, the nodal structures become a source of Berry curvature, leading to a large anomalous Hall effect. However, two-dimensional systems can possess stable nodal structures only when proper crystalline symmetry exists. Here we show that two-dimensional spin-polarized band structures of perovskite oxides generally support symmetry-protected nodal lines and points that govern both the sign and the magnitude of the anomalous Hall effect. To demonstrate this, we performed angle-resolved photoemission studies of ultrathin films of SrRuO3, a representative metallic ferromagnet with spin-orbit coupling. We show that the sign-changing anomalous Hall effect upon variation in the film thickness, magnetization and chemical potential can be well explained by theoretical models. Our work may facilitate new switchable devices based on ferromagnetic ultrathin films.

10.
Phys Rev Lett ; 126(21): 216406, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34114872

RESUMEN

Heavy fermion compounds exhibiting a ferromagnetic quantum critical point have attracted considerable interest. Common to two known cases, i.e., CeRh_{6}Ge_{4} and YbNi_{4}P_{2}, is that the 4f moments reside along chains with a large interchain distance, exhibiting strong magnetic anisotropy that was proposed to be vital for the ferromagnetic quantum criticality. Here, we report an angle-resolved photoemission study on CeRh_{6}Ge_{4} in which we observe sharp momentum-dependent 4f bands and clear bending of the conduction bands near the Fermi level, indicating considerable hybridization between conduction and 4f electrons. The extracted hybridization strength is anisotropic in momentum space and is obviously stronger along the Ce chain direction.The hybridized 4f bands persist up to high temperatures, and the evolution of their intensity shows clear band dependence. Our results provide spectroscopic evidence for anisotropic hybridization between conduction and 4f electrons in CeRh_{6}Ge_{4}, which could be important for understanding the electronic origin of the ferromagnetic quantum criticality.

11.
Phys Rev Lett ; 126(13): 136401, 2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33861118

RESUMEN

Samarium hexaboride is a candidate for the topological Kondo insulator state, in which Kondo coherence is predicted to give rise to an insulating gap spanned by topological surface states. Here we investigate the surface and bulk electronic properties of magnetically alloyed Sm_{1-x}M_{x}B_{6} (M=Ce, Eu), using angle-resolved photoemission spectroscopy and complementary characterization techniques. Remarkably, topologically nontrivial bulk and surface band structures are found to persist in highly modified samples with up to 30% Sm substitution and with an antiferromagnetic ground state in the case of Eu doping. The results are interpreted in terms of a hierarchy of energy scales, in which surface state emergence is linked to the formation of a direct Kondo gap, while low-temperature transport trends depend on the indirect gap.

12.
Nano Lett ; 20(11): 7973-7979, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33104350

RESUMEN

The proximity of two different materials leads to an intricate coupling of quasiparticles so that an unprecedented electronic state is often realized at the interface. Here, we demonstrate a resonance-type many-body ground state in graphene, a nonmagnetic two-dimensional Dirac semimetal, when grown on SmB6, a Kondo insulator, via thermal decomposition of fullerene molecules. This ground state is typically observed in three-dimensional magnetic materials with correlated electrons. Above the characteristic Kondo temperature of the substrate, the electron band structure of pristine graphene remains almost intact. As temperature decreases, however, the Dirac Fermions of graphene become hybridized with the Sm 4f states. Remarkable enhancement of the hybridization and Kondo resonance is observed with further cooling and increasing charge-carrier density of graphene, evidencing the Kondo screening of the Sm 4f local magnetic moment by the conduction electrons of graphene at the interface. These findings manifest the realization of the Kondo effect in graphene by the proximity of SmB6 that is tuned by the temperature and charge-carrier density of graphene.

13.
Phys Rev Lett ; 124(7): 076401, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32142327

RESUMEN

The compound UTe_{2} has recently been shown to realize spin triplet superconductivity from a nonmagnetic normal state. This has sparked intense research activity, including theoretical analyses that suggest the superconducting order parameter to be topologically nontrivial. However, the underlying electronic band structure is a critical factor for these analyses, and remains poorly understood. Here, we present high resolution angle-resolved photoemission measurements covering multiple planes in the 3D Brillouin zone of UTe_{2}, revealing distinct Fermi-level features from two orthogonal quasi-one-dimensional light electron bands and one heavy band. The electronic symmetries are evaluated in comparison with numerical simulations, and the resulting picture is discussed as a platform for unconventional many-body order.

14.
Phys Rev Lett ; 123(10): 106401, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31573315

RESUMEN

Motivated by the novel insulating state of Sr_{2}IrO_{4} from strong spin-orbit coupling (SOC), we investigate, by means of angle resolved photoemission, the metal-insulator transition (MIT) mechanism in Sr_{2-x}La_{x}RhO_{4} whose mother compound is isovalent and isostructural but has smaller SOC strength compared to Sr_{2}IrO_{4}. Transport and angle resolved photoemission results from single crystalline Sr_{2-x}La_{x}RhO_{4} revealed that the MIT occurs coincidentally with a multi- to single-band transition (Lifshitz transition) at x=0.4. Starting from x=0.4, there is a gradual but anomalous enhancement in the band gap size with additional electron doping, suggesting that the insulating phase in Sr_{2-x}La_{x}RhO_{4} is a new type which has been rarely investigated. These results suggest that the insulating phase in Sr_{2-x}La_{x}RhO_{4} is likely induced by the moderate SOC strength and electron doping effect from the La. Our findings not only elucidate the MIT mechanism in Sr_{2-x}La_{x}RhO_{4}, but may also open new avenues for novel MIT research in moderate SOC regimes.

15.
Nano Lett ; 18(9): 5628-5632, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30109804

RESUMEN

Elastic strain has the potential for a controlled manipulation of the band gap and spin-polarized Dirac states of topological materials, which can lead to pseudomagnetic field effects, helical flat bands, and topological phase transitions. However, practical realization of these exotic phenomena is challenging and yet to be achieved. Here we show that the Dirac surface states of the topological insulator Bi2Se3 can be reversibly tuned by an externally applied elastic strain. Performing in situ X-ray diffraction and in situ angle-resolved photoemission spectroscopy measurements during tensile testing of epitaxial Bi2Se3 films bonded onto a flexible substrate, we demonstrate elastic strains of up to 2.1% and quantify the resulting changes in the topological surface state. Our study establishes the functional relationship between the lattice and electronic structures of Bi2Se3 and, more generally, demonstrates a new route toward momentum-resolved mapping of strain-induced band structure changes.

16.
Nano Lett ; 18(2): 1099-1103, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29286670

RESUMEN

The monochromatic photoemission from diamondoid monolayers provides a new strategy to create electron sources with low energy dispersion and enables compact electron guns with high brightness and low beam emittance for aberration-free imaging, lithography, and accelerators. However, these potential applications are hindered by degradation of diamondoid monolayers under photon irradiation and electron bombardment. Here, we report a graphene-protected diamondoid monolayer photocathode with 4-fold enhancement of stability compared to the bare diamondoid counterpart. The single-layer graphene overcoating preserves the monochromaticity of the photoelectrons, showing 12.5 meV ful width at half-maximum distribution of kinetic energy. Importantly, the graphene coating effectively suppresses desorption of the diamondoid monolayer, enhancing its thermal stability by at least 100 K. Furthermore, by comparing the decay rate at different photon energies, we identify electron bombardment as the principle decay pathway for diamondoids under graphene protection. This provides a generic approach for stabilizing volatile species on photocathode surfaces, which could greatly improve performance of electron emitters.

17.
Nano Lett ; 18(6): 3661-3666, 2018 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-29761696

RESUMEN

The interaction between a magnetic impurity, such as cerium (Ce) atom, and surrounding electrons has been one of the core problems in understanding many-body interaction in solid and its relation to magnetism. Kondo effect, the formation of a new resonant ground state with quenched magnetic moment, provides a general framework to describe many-body interaction in the presence of magnetic impurity. In this Letter, a combined study of angle-resolved photoemission (ARPES) and dynamic mean-field theory (DMFT) on Ce-intercalated graphene shows that Ce-induced localized states near Fermi energy, EF, hybridized with the graphene π-band, exhibit gradual increase in spectral weight upon decreasing temperature. The observed temperature dependence follows the expectations from the Kondo picture in the weak coupling limit. Our results provide a novel insight how Kondo physics emerges in the sea of two-dimensional Dirac electrons.

18.
Phys Rev Lett ; 121(20): 206402, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30500247

RESUMEN

We report the electronic structure of CuTe with a high charge density wave (CDW) transition temperature T_{c}=335 K by angle-resolved photoemission spectroscopy. An anisotropic charge density wave gap with a maximum value of 190 meV is observed in the quasi-one-dimensional band formed by Te p_{x} orbitals. The CDW gap can be filled by increasing the temperature or electron doping through in situ potassium deposition. Combining the experimental results with calculated electron scattering susceptibility and phonon dispersion, we suggest that both Fermi surface nesting and electron-phonon coupling play important roles in the emergence of the CDW.

19.
Phys Chem Chem Phys ; 20(35): 23007-23012, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30159559

RESUMEN

A reduction in the electronic-dimensionality of materials is one method for achieving improvements in material properties. Here, a reduction in electronic-dimensionality is demonstrated using a simple hydrogen treatment technique. Quantum well states from hydrogen-treated bulk 2H-MoS2 are observed using angle resolved photoemission spectroscopy (ARPES). The electronic states are confined within a few MoS2 layers after the hydrogen treatment. A significant reduction in the band-gap can also be achieved after the hydrogen treatment, and both phenomena can be explained by the formation of sulfur vacancies generated by the chemical reaction between sulfur and hydrogen.

20.
Nano Lett ; 17(10): 5914-5918, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28906124

RESUMEN

The electron band structure of graphene on SrTiO3 substrate has been investigated as a function of temperature. The high-resolution angle-resolved photoemission study reveals that the spectral width at Fermi energy and the Fermi velocity of graphene on SrTiO3 are comparable to those of graphene on a BN substrate. Near the charge neutrality, the energy-momentum dispersion of graphene exhibits a strong deviation from the well-known linearity, which is magnified as temperature decreases. Such modification resembles the characteristics of enhanced electron-electron interaction. Our results not only suggest that SrTiO3 can be a plausible candidate as a substrate material for applications in graphene-based electronics but also provide a possible route toward the realization of a new type of strongly correlated electron phases in the prototypical two-dimensional system via the manipulation of temperature and a proper choice of dielectric substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA