Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
EMBO J ; 27(1): 179-87, 2008 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-18034154

RESUMEN

TASK1 (KCNK3) and TASK3 (KCNK9) are two-pore domain potassium channels highly expressed in adrenal glands. TASK1/TASK3 heterodimers are believed to contribute to the background conductance whose inhibition by angiotensin II stimulates aldosterone secretion. We used task1-/- mice to analyze the role of this channel in adrenal gland function. Task1-/- exhibited severe hyperaldosteronism independent of salt intake, hypokalemia, and arterial 'low-renin' hypertension. The hyperaldosteronism was fully remediable by glucocorticoids. The aldosterone phenotype was caused by an adrenocortical zonation defect. Aldosterone synthase was absent in the outer cortex normally corresponding to the zona glomerulosa, but abundant in the reticulo-fasciculata zone. The impaired mineralocorticoid homeostasis and zonation were independent of the sex in young mice, but were restricted to females in adults. Patch-clamp experiments on adrenal cells suggest that task3 and other K+ channels compensate for the task1 absence. Adrenal zonation appears as a dynamic process that even can take place in adulthood. The striking changes in the adrenocortical architecture in task1-/- mice are the first demonstration of the causative role of a potassium channel in development/differentiation.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Homeostasis/genética , Mineralocorticoides/antagonistas & inhibidores , Mineralocorticoides/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/deficiencia , Canales de Potasio de Dominio Poro en Tándem/genética , Glándulas Suprarrenales/patología , Aldosterona/sangre , Aldosterona/metabolismo , Animales , Femenino , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Potasio/sangre , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Renina/sangre
2.
Cardiovasc Res ; 67(3): 529-38, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16039274

RESUMEN

OBJECTIVE: The voltage-gated K+ channel KCNQ1 associates with the small KCNE1 beta subunit to underlie the IKs repolarizing current in the heart. Based on sequence homology, the KCNE family is recognized to comprise five members. Controversial data have indicated their participation in several K+ channel protein complexes, including KCNQ1. The expression level and the putative functions of the different KCNE subunits in the human heart still require further investigation. METHODS: We have carried out a comparative study of all KCNE subunits with KCNQ1 using the patch-clamp technique in mammalian cells. Real-time RT-PCR absolute quantification was performed on human atrial and ventricular tissue. RESULTS: While KCNQ1/KCNE1 heteromultimer reached high current density with slow gating kinetics and pronounced voltage dependence, KCNQ1/KCNE2 and KCNQ1/KCNE3 complexes produced instantaneous voltage-independent currents with low and high current density, respectively. Co-expression of KCNE4 or KCNE5 with KCNQ1 induced small currents in the physiological range of voltages, with kinetics similar to those of the KCNQ1/KCNE1 complex. However, co-expression of these inhibitory subunits with a disease-associated mutation (S140G-KCNQ1) led to currents that were almost undistinguishable from the KCNQ1/KCNE1 canonical complex. Absolute cDNA quantification revealed a relatively homogeneous distribution of each transcript, except for KCNE4, inside left atria and endo- and epicardia of left ventricular wall with the following abundance: KCNQ1 >> KCNE4 > or = KCNE1 > KCNE3 > KCNE2 > KCNE5. KCNE4 expression was twice as high in atrium compared to ventricle. CONCLUSIONS: Our data show that KCNQ1 forms a channel complex with 5 KCNE subunits in a specific manner but only interactions with KCNE1, KCNE2, and KCNE3 may have physiological relevance in the human heart.


Asunto(s)
Canal de Potasio KCNQ1/genética , Miocardio/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , ARN Mensajero/análisis , Animales , Células COS , Chlorocebus aethiops , Cricetinae , Atrios Cardíacos , Humanos , Activación del Canal Iónico , Canales de Potasio con Entrada de Voltaje/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección/métodos
3.
J Med Chem ; 47(4): 962-72, 2004 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-14761197

RESUMEN

Chloride channels play important roles in homeostasis and regulate cell volume, transepithelial transport, and electrical excitability. Despite recent progress made in the genetic and molecular aspect of chloride channels, their pharmacology is still poorly understood. The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-regulated epithelial chloride channel for which mutations cause cystic fibrosis. Here we have synthesized benzo[c]quinolizinium and benzo[f]indolo[2,3-a]quinolizinium salts (MPB) and performed a SAR to identify the structural basis for activation of the CFTR chloride channel. Synthesized compounds were evaluated on wild-type CFTR and on CFTR having the glycine-to-aspartic acid missense mutation at codon 551 (G551D-CFTR), using a robot and cell-based assay. The presence of an hydroxyl group at position 6 of the benzo[c]quinolizinium skeleton associated with a chlorine atom at position 10 or 7 and an alkyl chain at position 5 determined the highest activity. The most potent product is 5-butyl-7-chloro-6-hydroxybenzo[c]quinolizinium chloride (8u, MPB-104). 8u is 100 times more potent than the parent compound 8a (MPB-07).


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Quinolizinas/síntesis química , Animales , Células CHO , Cricetinae , Cristalografía por Rayos X , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Mutación , Quinolizinas/química , Quinolizinas/farmacología , Relación Estructura-Actividad
4.
Br J Pharmacol ; 141(4): 698-708, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14744818

RESUMEN

1. In the human airway epithelium, VIP/PACAP receptors are distributed in nerve fibers and in epithelial cells but their role in transepithelial ion transport have not been reported. Here, we show that human bronchial epithelial Calu-3 cells expressed the VPAC(1) receptor subtype which shares similar high affinity for VIP and PACAP-27. 2. The stoichiometric binding parameters characterizing the (125)I-VIP and (125)I-PACAP-27 binding to these receptors were determined. 3. We found that VIP (EC(50) approximately 7.6 nM) and PACAP-27 (EC(50) approximately 10 nM) stimulated glibenclamide-sensitive and DIDS-insensitive iodide efflux in Calu-3 cells. 4. The protein kinase A (PKA) inhibitor, H-89 and the protein kinase C (PKC) inhibitor, chelerythrine chloride prevented activation by both peptides demonstrating that PKA and PKC are part of the signaling pathway. This profile corresponds to the pharmacological signature of CFTR. 5. In the cystic fibrosis airway epithelial IB3-1 cell lacking functional CFTR but expressing VPAC(1) receptors, neither VIP, PACAP-27 nor forskolin stimulated chloride transport. 6. Ussing chamber experiments demonstrated stimulation of CFTR-dependent short-circuit currents by VIP or PACAP-27 applied to the basolateral but not to the apical side of Calu-3 cells monolayers. 7. This study shows the stimulation in human bronchial epithelial cells of CFTR-dependent chloride secretion following activation by VIP and PACAP-27 of basolateral VPAC(1) receptors.


Asunto(s)
Bronquios/metabolismo , Cloruros/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Células Epiteliales/metabolismo , Neuropéptidos/farmacología , Receptores de Péptido Intestinal Vasoactivo/agonistas , Péptido Intestinal Vasoactivo/farmacología , Bronquios/citología , Bronquios/efectos de los fármacos , Línea Celular , Colforsina/farmacología , Células Epiteliales/efectos de los fármacos , Gliburida/farmacología , Humanos , Hipoglucemiantes/farmacología , Yoduros/metabolismo , Neuropéptidos/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria , Receptores de la Hormona Hipofisaria/metabolismo , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Péptido Intestinal Vasoactivo/metabolismo
5.
Biochem Pharmacol ; 66(3): 425-30, 2003 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12907241

RESUMEN

The substituted benzo[c]quinolizinium compounds MPB-07 and MPB-91 are novel activators of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. High homologies between CFTR and the sulfonylurea receptor (SUR), which associates with the potassium channel Kir6.2 to form the ATP-sensitive K(+) (K(ATP)) channel, prompted us to examine possible effects of these compounds on K(ATP) channels using electrophysiological recordings and binding assays. Activity of recombinant K(ATP) channels expressed in Xenopus oocytes was recorded in the inside-out configuration of the patch-clamp technique. Channels were practically unaffected by MPB-07 but were fully blocked by MPB-91 with half-inhibition achieved at approximately 20 microM MPB-91. These effects were similar on channels formed by Kir6.2, and either the SUR1 or SUR2A isoforms were independent of the presence of nucleotides. They were not influenced by SUR mutations known to interfere with its nucleotide-binding capacity. MPB-91, but not MPB-07, was able to displace binding of glibenclamide to HEK cells expressing recombinant SUR1/Kir6.2 channels. Glibenclamide binding to native channels from pancreatic MIN6 cells was also displaced by MPB-91. A Kir6.2 mutant able to form channels without SUR was also blocked by MPB-91, but not by MPB-07. These observations demonstrate that neither MPB-07 nor MPB-91 interact with SUR, in spite of its high homology with CFTR, and that MPB-91 blocks K(ATP) channels by binding to the Kir6.2 subunit. Thus, caution should be exercised when planning to use MPB compounds in cystic fibrosis therapy, specially MPB-91 which could nonetheless find interesting applications as the precursor of a new class of K channel blockers.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Quinolizinas/farmacología , Animales , Células Cultivadas , Humanos , Oocitos , Canales de Potasio , Canales de Potasio de Rectificación Interna/agonistas , Transfección , Xenopus laevis
6.
J Cyst Fibros ; 3 Suppl 2: 119-21, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15463942

RESUMEN

Flux studies using either radioisotopes or ion-selective electrodes are a convenient method to assay the function of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. Here, we described three different protocols to study the properties, regulation and pharmacology of the CFTR Cl- channel in populations of cells and artificial vesicles. These techniques are widely used to evaluate the function of wild-type and mutant CFTR prior to detailed analyses using the patch-clamp technique. Moreover, they have proved especially valuable in the search for new drugs to treat cystic fibrosis.


Asunto(s)
Membrana Celular/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Técnicas Citológicas , Transporte Iónico/fisiología , Técnicas de Cultivo de Célula , Membrana Celular/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Humanos , Electrodos de Iones Selectos , Liposomas/farmacología , Radioisótopos/farmacología
7.
J Physiol ; 582(Pt 1): 27-39, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17510180

RESUMEN

ATP-sensitive K+ channels (K(ATP) channels) are metabolic sensors formed by association of a K+ channel, Kir6, and an ATP-binding cassette (ABC) protein, SUR, which allosterically regulates channel gating in response to nucleotides and pharmaceutical openers and blockers. How nucleotide binding to SUR translates into modulation of Kir6 gating remains largely unknown. To address this issue, we have used a novel conformational KATP channel inhibitor, rhodamine 123 (Rho123) which targets the Kir6 subunit in a SUR-dependent manner. Rho123 blocked SUR-less Kir6.2 channels with an affinity of approximately 1 microM, regardless of the presence of nucleotides, but it had no effect on channels formed by the association of Kir6.2 and the N-terminal transmembrane domain TMD0 of SUR. Rho123 blocked SUR + Kir6.2 channels with the same affinity as Kir6.2 but this effect was antagonized by ATP. Protection from Rho123 block by ATP was due to direct binding of ATP to SUR and did not entail hydrolysis because it was not mimicked by AMP, did not require Mg2+ and was reduced by mutations in the nucleotide-binding domains of SUR. These results suggest that Rho123 binds at the TMD0-Kir6.2 interface and that binding of ATP to SUR triggers a change in the structure of the contact zone between Kir6.2 and domain TMD0 of SUR that causes masking of the Rho123 site on Kir6.2.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Colorantes Fluorescentes/farmacología , Activación del Canal Iónico/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio/metabolismo , Receptores de Droga/metabolismo , Rodamina 123/farmacología , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Regulación Alostérica/efectos de los fármacos , Animales , Unión Competitiva , Clonación Molecular , Cricetinae , Femenino , Colorantes Fluorescentes/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Ratones , Mutación , Oocitos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/metabolismo , Canales de Potasio/química , Canales de Potasio/genética , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/genética , Conformación Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Ratas , Receptores de Droga/química , Receptores de Droga/genética , Rodamina 123/metabolismo , Receptores de Sulfonilureas , Factores de Tiempo , Xenopus laevis
8.
J Mol Cell Cardiol ; 38(6): 951-63, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15910880

RESUMEN

The sulfonylurea receptor SUR is an ATP binding cassette (ABC) protein of the ABCC/MRP family. Unlike other ABC proteins, it has no intrinsic transport function, neither active nor passive, but associates with the potassium channel proteins Kir6.1 or Kir6.2 to form the ATP-sensitive potassium (K(ATP)) channel. Within the channel complex SUR serves as a regulatory subunit which fine-tunes the gating of Kir6.x in response to alterations in cellular metabolism. It constitutes a major pharmaceutical target as it binds numerous drugs, K(ATP) channel openers and blockers, capable of up- or down-regulating channel activity. We here review current knowledge on the molecular basis of the interaction of classical K(ATP) channel openers (cromakalim, pinacidil, diazoxide) with SUR.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/fisiología , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/fisiología , Canales de Potasio/química , Receptores de Droga/química , Receptores de Droga/fisiología , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/química , Animales , Cromakalim/farmacología , Citoplasma/metabolismo , Diazóxido/farmacología , Regulación hacia Abajo , Humanos , Canales KATP , Modelos Biológicos , Pinacidilo/farmacología , Canales de Potasio/fisiología , Canales de Potasio de Rectificación Interna/metabolismo , Unión Proteica , Isoformas de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Sulfonilureas , Regulación hacia Arriba
9.
J Biol Chem ; 277(39): 35999-6004, 2002 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-12124395

RESUMEN

Loss of cystic fibrosis transmembrane conductance regulator (CFTR) channel activity explains most of the manifestations of the cystic fibrosis (CF) disease. To understand the consequences of CF mutations on CFTR channel activity, we compared the pharmacological properties of wild-type (wt) and G551D-CFTR. Dose-dependent relationships of wt-CFTR activated by genistein follows a non-Michaelis-Menten behavior consistent with the presence of two binding sites. With phosphorylated CFTR, a high affinity site for genistein is the activator (K(s) approximately 3 microm), whereas a second site of low affinity (K(i) approximately 75 microm) is the inhibitor. With non-phosphorylated CFTR, K(s) was increased (K(s) approximately 12 microm), but K(i) was not affected (K(i) approximately 70 microm). In G551D-CFTR cells, channel activity was recovered by co-application of forskolin and genistein in a dose-dependent manner. A further stimulation of G551D-CFTR channel activity was measured at concentrations from 30 microm to 1 mm. The dose response is described by a classical Michaelis-Menten kinetics with only a single apparent site (K(m) approximately 11 microm). Our results suggest glycine 551 in NBD1 as an important location within the low affinity inhibitory site for genistein and offers new evidence for pharmacological alteration caused by an NBD1 mutation of CFTR. This study also reveals how a mutation of an ion channel converts a non-Michaelis-Menten behavior (two binding sites) into a classical Michaelis-Menten model (one binding site).


Asunto(s)
Colforsina/farmacología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Genisteína/farmacología , Animales , Sitios de Unión , Células CHO , Cricetinae , Relación Dosis-Respuesta a Droga , Glutatión Transferasa/metabolismo , Glicina/química , Glicina/metabolismo , Yoduros/farmacología , Cinética , Modelos Químicos , Técnicas de Placa-Clamp , Unión Proteica , Factores de Tiempo
10.
J Physiol ; 559(Pt 1): 157-67, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15218066

RESUMEN

Extracellular Zn(2+) has been identified as an activator of pancreatic K(ATP) channels. We further examined the action of Zn(2+) on recombinant K(ATP) channels formed with the inward rectifier K(+) channel subunit Kir6.2 associated with either the pancreatic/neuronal sulphonylurea receptor 1 (SUR1) subunit or the cardiac SUR2A subunit. Zn(2+), applied at either the extracellular or intracellular side of the membrane appeared as a potent, reversible activator of K(ATP) channels. External Zn(2+), at micromolar concentrations, activated SUR1/Kir6.2 but induced a small inhibition of SUR2A/Kir6.2 channels. Cytosolic Zn(2+) dose-dependently stimulated both SUR1/Kir6.2 and SUR2A/Kir6.2 channels, with half-maximal effects at 1.8 and 60 microm, respectively, but it did not affect the Kir6.2 subunit expressed alone. These observations point to an action of both external and internal Zn(2+) on the SUR subunit. Effects of internal Zn(2+) were not due to Zn(2+) leaking out, since they were unaffected by the presence of a Zn(2+) chelator on the external side. Similarly, internal chelators did not affect activation by external Zn(2+). Therefore, Zn(2+) is an endogenous K(ATP) channel opener being active on both sides of the membrane, with potentially distinct sites of action located on the SUR subunit. These findings uncover a novel regulatory pathway targeting K(ATP) channels, and suggest a new role for Zn(2+) as an intracellular signalling molecule.


Asunto(s)
Adenosina Trifosfato/fisiología , Líquido Extracelular/fisiología , Líquido Intracelular/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Zinc/química , Adenosina Trifosfato/química , Animales , Células COS , Chlorocebus aethiops , Cricetinae , Líquido Extracelular/química , Femenino , Líquido Intracelular/química , Ratones , Oocitos/fisiología , Canales de Potasio de Rectificación Interna/química , Subunidades de Proteína/química , Subunidades de Proteína/fisiología , Ratas , Xenopus laevis
11.
J Cell Sci ; 117(Pt 10): 1923-35, 2004 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15039462

RESUMEN

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-dependent chloride channel that mediates electrolyte transport across the luminal surface of epithelial cells. In this paper, we describe the CFTR regulation by syntaxin 8, a t-SNARE protein (target soluble N-ethylmaleimide-sensitive factor attachment protein receptor) involved in the SNARE endosomal complex. Syntaxin family members are key molecules implicated in diverse vesicle docking and membrane fusion events. We found that syntaxin 8 physically interacts with CFTR: recombinant syntaxin 8 binds CFTR in vitro and both proteins co-immunoprecipitate in HT29 cells. Syntaxin 8 regulates CFTR-mediated currents in chinese hamster ovary (CHO) cells stably expressing CFTR and syntaxin 8. Iodide efflux and whole-cell patch-clamp experiments on these cells indicate a strong inhibition of CFTR chloride current by syntaxin 8 overexpression. At the cellular level, we observed that syntaxin 8 overexpression disturbs CFTR trafficking. Confocal microscopy shows a dramatic decrease in green fluorescent protein-tagged CFTR plasma membrane staining, when syntaxin 8 is coexpressed in COS-7 cells. Using antibodies against Lamp-1, TfR or Rab11 we determined by immunofluorescence assays that both proteins are mainly accumulated in recycling endosomes. Our results evidence that syntaxin 8 contributes to the regulation of CFTR trafficking and chloride channel activity by the SNARE machinery.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Proteínas de la Membrana/fisiología , Animales , Antígenos CD/metabolismo , Antígenos de Superficie/metabolismo , Células CHO , Células COS , Línea Celular , Cricetinae , ADN Complementario/metabolismo , Electroforesis en Gel de Poliacrilamida , Endosomas/metabolismo , Glutatión Transferasa/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Yoduros/química , Proteínas de Membrana de los Lisosomas , Proteínas de la Membrana/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Proteínas del Tejido Nervioso/metabolismo , Técnicas de Placa-Clamp , Unión Proteica , Transporte de Proteínas , Proteínas Qa-SNARE , Receptores de Transferrina/metabolismo , Transducción de Señal , Sintaxina 1 , Factores de Tiempo , Transfección , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA