Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 24(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176074

RESUMEN

Bidirectional dialogue between cellular and non-cellular components of the tumor microenvironment (TME) drives cancer survival. In the extracellular space, combinations of matrix molecules and soluble mediators provide external cues that dictate the behavior of TME resident cells. Often studied in isolation, integrated cues from complex tissue microenvironments likely function more cohesively. Here, we study the interplay between the matrix molecule tenascin-C (TNC) and chemokine CCL2, both elevated in and associated with the progression of breast cancer and playing key roles in myeloid immune responses. We uncover a correlation between TNC/CCL2 tissue levels in HER2+ breast cancer and examine the physical and functional interactions of these molecules in a murine disease model with tunable TNC levels and in in vitro cellular and cell-free models. TNC supported sustained CCL2 synthesis, with chemokine binding to TNC via two distinct domains. TNC dominated the behavior of tumor-resident myeloid cells; CCL2 did not impact macrophage survival/activation whilst TNC facilitated an immune suppressive macrophage phenotype that was not dependent on or altered by CCL2 co-expression. Together, these data map new binding partners within the TME and demonstrate that whilst the matrix exerts transcriptional control over the chemokine, each plays a distinct role in subverting anti-tumoral immunity.


Asunto(s)
Neoplasias , Tenascina , Animales , Ratones , Quimiocinas/metabolismo , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Neoplasias/metabolismo , Transducción de Señal , Tenascina/metabolismo , Quimiocina CCL2/metabolismo
2.
Molecules ; 26(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34576979

RESUMEN

Glycosaminoglycans are a class of linear, highly negatively charged, O-linked polysaccharides that are involved in many (patho)physiological processes. In vitro experimental investigations of such processes typically involve porcine-derived heparan sulfate (HS). Structural information about human, particularly organ-specific heparan sulfate, and how it compares with HS from other organisms, is very limited. In this study, heparan sulfate was isolated from human lung tissues derived from five donors and was characterized for their overall size distribution and disaccharide composition. The expression profiles of proteoglycans and HS-modifying enzymes was quantified in order to identify the major core proteins for HS. In addition, the binding affinities of human HS to two chemokines-CXCL8 and CCL2-were investigated, which represent important inflammatory mediators in lung pathologies. Our data revealed that syndecans are the predominant proteoglycan class in human lungs and that the disaccharide composition varies among individuals according to sex, age, and health stage (one of the donor lungs was accidentally discovered to contain a solid tumor). The compositional difference of the five human lung HS preparations affected chemokine binding affinities to various degrees, indicating selective immune cell responses depending on the relative chemokine-glycan affinities. This represents important new insights that could be translated into novel therapeutic concepts for individually treating lung immunological disorders via HS targets.


Asunto(s)
Heparitina Sulfato , Animales , Glicosaminoglicanos , Humanos , Pulmón , Porcinos
3.
Int J Mol Sci ; 18(12)2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29207576

RESUMEN

The recruitment of leukocytes, mediated by endothelium bound chemokine gradients, is a vital process in inflammation. The highly negatively charged, unbranched polysaccharide family of glycosaminoglycans (GAGs), such as heparan sulfate and chondroitin sulfate mediate chemokine immobilization. Specifically the binding of CXCL8 (interleukin 8) to GAGs on endothelial cell surfaces is known to regulate neutrophil recruitment. Currently, it is not clear if binding of CXCL8 to GAGs leads to endothelial downstream signaling in addition to the typical CXCR1/CXCR2 (C-X-C motif chemokine receptor 1 and 2)-mediated signaling which activates neutrophils. Here we have investigated the changes in protein expression of human microvascular endothelial cells induced by CXCL8. Tumor necrosis factor alpha (TNFα) stimulation was used to mimic an inflammatory state which allowed us to identify syndecan-4 (SDC4) as the potential proteoglycan co-receptor of CXCL8 by gene array, real-time PCR and flow cytometry experiments. Enzymatic GAG depolymerization via heparinase III and chondroitinase ABC was used to emulate the effect of glycocalyx remodeling on CXCL8-induced endothelial downstream signaling. Proteomic analyses showed changes in the expression pattern of a number of endothelial proteins such as Zyxin and Caldesmon involved in cytoskeletal organization, cell adhesion and cell mobility. These results demonstrate for the first time a potential role of GAG-mediated endothelial downstream signaling in addition to the well-known CXCL8-CXCR1/CXCR2 signaling pathways in neutrophils.


Asunto(s)
Células Endoteliales/metabolismo , Glicosaminoglicanos/metabolismo , Interleucina-8/metabolismo , Línea Celular , Humanos , Interleucina-8/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos , Sindecano-4/metabolismo
4.
Electrophoresis ; 37(11): 1437-47, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26970331

RESUMEN

Glycosaminoglycans (GAGs) are linear, highly sulfated polysaccharides expressed by almost all animal cells. They occur as soluble molecules, or form proteoglycans by being O-linked to different core proteins on the cell surface and in the extracellular matrix. Due to their ability to interact with diverse proteins and to modulate their biologic functions, GAGs are main drivers of mammalian biology. However, to the present day, the human GAG binding proteome has only been insufficiently explored. The aim of this study was therefore to investigate the human GAG binding proteome of different sources by using the major GAG classes as ligands, and to explore the GAG-binding selectivity of the human plasma proteome. For this purpose, proteins were pulled down from immobilized low molecular weight heparin, heparan sulfate, and dermatan sulfate under different conditions and were identified by nano-LC/MS². Four hundred and fifty eight human GAG binding proteins have been identified, whereas plasma proteins showed clear differences in their GAG-binding specificity/selectivity and affinity. We were able to differentiate between proteins that bound to all three glycan ligands and proteins that showed selective binding to one or two glycan ligands. Moreover, step-gradient salt elution revealed different binding affinities toward different GAG ligands. On top of proteins with well-known GAG-binding properties we have identified formerly unknown GAG binders. Functional annotation of the identified GAG-binding proteins showed clusters of proteins that are involved in a variety of biological processes. The method described here is well suited for identifying GAG-binding proteins and for comparing human subproteomes with respect to binding to different GAG classes.


Asunto(s)
Glicosaminoglicanos/química , Proteínas/química , Proteómica/métodos , Animales , Proteínas Sanguíneas/química , Humanos , Ligandos , Unión Proteica
5.
J Clin Med ; 9(1)2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936148

RESUMEN

BACKGROUND: Heart failure (HF) remains one of the leading causes of death to date despite extensive research funding. Various studies are conducted every year in an attempt to improve diagnostic accuracy and therapy monitoring. The small cytoplasmic heart-type fatty acid-binding protein (H-FABP) has been studied in a variety of disease entities. Here, we provide a review of the available literature on H-FABP and its possible applications in HF. Methods: Literature research using PubMed Central was conducted. To select possible studies for inclusion, the authors screened all available studies by title and, if suitable, by abstract. Relevant manuscripts were read in full text. RESULTS: In total, 23 studies regarding H-FABP in HF were included in this review. CONCLUSION: While, algorithms already exist in the area of risk stratification for acute pulmonary embolism, there is still no consensus for the routine use of H-FABP in daily clinical practice in HF. At present, the strongest evidence exists for risk evaluation of adverse cardiac events. Other future applications of H-FABP may include early detection of ischemia, worsening of renal failure, and long-term treatment planning.

6.
Front Immunol ; 10: 2759, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921102

RESUMEN

Monocyte chemoattractant protein-1 (MCP-1/CCL2) is renowned for its ability to drive the chemotaxis of myeloid and lymphoid cells. It orchestrates the migration of these cell types both during physiological immune defense and in pathological circumstances, such as autoimmune diseases including rheumatoid arthritis and multiple sclerosis, inflammatory diseases including atherosclerosis, as well as infectious diseases, obesity, diabetes, and various types of cancer. However, new data suggest that the scope of CCL2's functions may extend beyond its original characterization as a chemoattractant. Emerging evidence shows that it can impact leukocyte behavior, influencing adhesion, polarization, effector molecule secretion, autophagy, killing, and survival. The direction of these CCL2-induced responses is context dependent and, in some cases, synergistic with other inflammatory stimuli. The involvement of CCL2 signaling in multiple diseases renders it an interesting therapeutic target, although current targeting strategies have not met early expectations in the clinic. A better understanding of how CCL2 affects immune cells will be pivotal to the improvement of existing therapeutic approaches and the development of new drugs. Here, we provide an overview of the pleiotropic effects of CCL2 signaling on cells of the myeloid lineage, beyond chemotaxis, and highlight how these actions might help to shape immune cell behavior and tumor immunity.


Asunto(s)
Quimiocina CCL2/metabolismo , Quimiotaxis/inmunología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Animales , Comunicación Celular , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Quimiocina CCL2/genética , Quimiotaxis/genética , Regulación de la Expresión Génica , Humanos , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Transducción de Señal
7.
Biochim Biophys Acta Gen Subj ; 1863(3): 528-533, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30586626

RESUMEN

BACKGROUND: Binding of chemokines to glycosaminoglycans (GAGs) is a crucial step in leukocyte recruitment to inflamed tissues. METHODS: A disaccharide compositional analysis of the HS dp6 fraction in combination with MS analysis of the CCL2-depleted dp6 fraction was the basis for target GAG ligand structure suggestions. Four experimentally-derived heparan sulfate hexasaccharides, two potentially chemokine-specific and two unspecific, have been docked to CCL2. Subsequent 300 ns molecular dynamics simulations were used to improve the docked complexes. RESULTS: Hexasaccharides with four sulfations and no acetylations are suggested for selective and high affinity chemokine binding. Using the Antithromin-III/heparin complex as positive control for docking, we were able to recover the correct complex structure only if the previously liganded ATIII structure was used as input. Since the liganded structure is not known for a CCL2-GAG complex, we investigated if molecular dynamics simulations could improve initial docking results. We found that all four GAG oligosaccharides ended up in close contact with the known binding residues after about 100 ns simulation time. CONCLUSIONS: A discrimination of specific vs. unspecific CCL2 GAG ligands is not possible by this approach. Long-time molecular dynamics simulations are, however, well suited to capture the delicate enthalpy/entropy balance of GAG binding and improve results obtained from docking. GENERAL SIGNIFICANCE: With the comparison of two methods, MS-based ligand identification and molecular modelling, we have shown the current limitations of our molecular understanding of complex ligand binding which is could be due to the numerical inaccessibility of ligand-induced protein conformational changes.


Asunto(s)
Quimiocina CCL2/química , Quimiocina CCL2/metabolismo , Heparitina Sulfato/metabolismo , Simulación de Dinámica Molecular , Oligosacáridos/metabolismo , Secuencia de Carbohidratos , Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión/métodos , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/aislamiento & purificación , Oligosacáridos/química , Oligosacáridos/aislamiento & purificación , Unión Proteica
8.
Methods Enzymol ; 570: 517-38, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26921960

RESUMEN

Interactions between chemokines and glycosaminoglycans (GAGs) are crucial for the physiological and pathophysiological activities of chemokines. GAGs are therefore commonly designated as chemokine coreceptors which are deeply involved in the chemokine-signaling network. Studying the interaction of chemokines with GAGs is therefore a major prerequisite to fully understand the biological function of chemokines. GAGs are, however, a very complex class of biomacromolecules which cannot be produced by conventional recombinant methods and which, if purchased from commercial suppliers, are often not subjected to rigorous quality control and therefore frequently differ in batch characteristics. This naturally impacts chemokine-GAG interaction studies. In order to standardize the quality of our GAG ligands, we have therefore established protocols for the preparation and characterization of GAGs from various cells and tissues, for which we give practical examples relating to the major GAG classes heparin, heparan sulfate, and chondroitin sulfate. We will also outline robust and sensitive protocols for chemokine-GAG interaction studies. By this means, a better and more common understanding of the involvement of GAGs in chemokine-signaling networks can be envisaged.


Asunto(s)
Glicosaminoglicanos/aislamiento & purificación , Glicosaminoglicanos/metabolismo , Biología Molecular/métodos , Receptores de Quimiocina/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Cromatografía por Intercambio Iónico/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Fluorescencia , Heparitina Sulfato/química , Heparitina Sulfato/aislamiento & purificación , Heparitina Sulfato/metabolismo , Humanos , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA