Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(42): E8885-E8894, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-28928148

RESUMEN

Here, we present a transformational approach to genome engineering of herpes simplex virus type 1 (HSV-1), which has a large DNA genome, using synthetic genomics tools. We believe this method will enable more rapid and complex modifications of HSV-1 and other large DNA viruses than previous technologies, facilitating many useful applications. Yeast transformation-associated recombination was used to clone 11 fragments comprising the HSV-1 strain KOS 152 kb genome. Using overlapping sequences between the adjacent pieces, we assembled the fragments into a complete virus genome in yeast, transferred it into an Escherichia coli host, and reconstituted infectious virus following transfection into mammalian cells. The virus derived from this yeast-assembled genome, KOSYA, replicated with kinetics similar to wild-type virus. We demonstrated the utility of this modular assembly technology by making numerous modifications to a single gene, making changes to two genes at the same time and, finally, generating individual and combinatorial deletions to a set of five conserved genes that encode virion structural proteins. While the ability to perform genome-wide editing through assembly methods in large DNA virus genomes raises dual-use concerns, we believe the incremental risks are outweighed by potential benefits. These include enhanced functional studies, generation of oncolytic virus vectors, development of delivery platforms of genes for vaccines or therapy, as well as more rapid development of countermeasures against potential biothreats.


Asunto(s)
Genómica/métodos , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidad , Animales , Proteínas Bacterianas/genética , Chlorocebus aethiops , Cromosomas Artificiales Bacterianos , Escherichia coli/genética , Genoma Viral , Proteínas Luminiscentes/genética , Proteínas Recombinantes de Fusión/genética , Recombinación Genética , Saccharomyces cerevisiae/genética , Células Vero , Ensamble de Virus/genética
2.
Nucleic Acids Res ; 45(7): e50, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27980064

RESUMEN

The delivery of large DNA vectors (>100 000 bp) remains a limiting step in the engineering of mammalian cells and the development of human artificial chromosomes (HACs). Yeast is commonly used to assemble genetic constructs in the megabase size range, and has previously been used to transfer constructs directly into cultured cells. We improved this method to efficiently deliver large (1.1 Mb) synthetic yeast centromeric plasmids (YCps) to cultured cell lines at rates similar to that of 12 kb YCps. Synchronizing cells in mitosis improved the delivery efficiency by 10-fold and a statistical design of experiments approach was employed to boost the vector delivery rate by nearly 300-fold from 1/250 000 to 1/840 cells, and subsequently optimize the delivery process for multiple mammalian, avian, and insect cell lines. We adapted this method to rapidly deliver a 152 kb herpes simplex virus 1 genome cloned in yeast into mammalian cells to produce infectious virus.


Asunto(s)
Técnicas de Transferencia de Gen , Vectores Genéticos , Saccharomyces cerevisiae/genética , Animales , Chlorocebus aethiops , Cromosomas , Cricetinae , Genoma Viral , Células HEK293 , Células HeLa , Herpesvirus Humano 1/genética , Humanos , Mitosis/genética , Plásmidos/genética , Células Vero
3.
J Am Chem Soc ; 140(36): 11495-11501, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30114365

RESUMEN

Membrane proteins play vital roles in cellular signaling processes and serve as the most popular drug targets. A key task in studying cellular functions and developing drugs is to measure the binding kinetics of ligands with the membrane proteins. However, this has been a long-standing challenge because one must perform the measurement in a membrane environment to maintain the conformations and functions of the membrane proteins. Here, we report a new method to measure ligand binding kinetics to membrane proteins using self-assembled virion oscillators. Virions of human herpesvirus were used to display human G-protein-coupled receptors (GPCRs) on their viral envelopes. Each virion was then attached to a gold-coated glass surface via a flexible polymer to form an oscillator and driven into oscillation with an alternating electric field. By tracking changes in the oscillation amplitude in real-time with subnanometer precision, the binding kinetics between ligands and GPCRs was measured. We anticipate that this new label-free detection technology can be readily applied to measure small or large ligand binding to any type of membrane proteins and thus contribute to the understanding of cellular functions and screening of drugs.


Asunto(s)
Nanopartículas/química , Receptores Acoplados a Proteínas G/química , Virión/química , Sitios de Unión , Humanos , Cinética , Ligandos , Estructura Molecular , Unión Proteica
4.
Antimicrob Agents Chemother ; 59(1): 527-35, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25385102

RESUMEN

Despite years of research dedicated to preventing the sexual transmission of herpes simplex virus 2 (HSV-2), there is still no protective vaccine or microbicide against one of the most common sexually transmitted infections in the world. Using a phage display library constructed from a llama immunized with recombinant HSV-2 glycoprotein D, we identified a single-domain antibody VHH, R33, which binds to the viral surface glycoprotein D. Although R33 does not demonstrate any HSV-2 neutralization activity in vitro, when expressed with the cytotoxic domain of exotoxin A, the resulting immunotoxin (R33ExoA) specifically and potently kills HSV-2-infected cells, with a 50% neutralizing dilution (IC50) of 6.7 nM. We propose that R33ExoA could be used clinically to prevent transmission of HSV-2 through killing of virus-producing epithelial cells during virus reactivation. R33 could also potentially be used to deliver other cytotoxic effectors to HSV-2-infected cells.


Asunto(s)
Antivirales/farmacología , Herpesvirus Humano 2/efectos de los fármacos , Anticuerpos de Dominio Único/farmacología , Proteínas del Envoltorio Viral/metabolismo , ADP Ribosa Transferasas/genética , ADP Ribosa Transferasas/inmunología , Animales , Toxinas Bacterianas/genética , Toxinas Bacterianas/inmunología , Camélidos del Nuevo Mundo , Chlorocebus aethiops , Exotoxinas/genética , Exotoxinas/inmunología , Inmunotoxinas/genética , Inmunotoxinas/inmunología , Inmunotoxinas/farmacología , Pruebas de Neutralización , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/farmacología , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/inmunología , Pruebas de Toxicidad/métodos , Células Vero/efectos de los fármacos , Células Vero/virología , Factores de Virulencia/genética , Factores de Virulencia/inmunología , Exotoxina A de Pseudomonas aeruginosa
5.
J Virol ; 88(10): 5455-61, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24574416

RESUMEN

UNLABELLED: Nelfinavir (NFV) is an HIV-1 protease inhibitor with demonstrated antiviral activity against herpes simplex virus 1 (HSV-1) and several other herpesviruses. However, the stages of HSV-1 replication inhibited by NFV have not been explored. In this study, we investigated the effects of NFV on capsid assembly and envelopment. We confirmed the inhibitory effects of NFV on HSV-1 replication by plaque assay and found that treatment with NFV did not affect capsid assembly, activity of the HSV-1 maturational protease, or formation of DNA-containing capsids in the nucleus. Confocal and electron microscopy studies showed that these capsids were transported to the cytoplasm but failed to complete secondary envelopment and subsequent exit from the cell. Consistent with the microscopy results, a light-scattering band corresponding to enveloped virions was not evident following sucrose gradient rate-velocity separation of lysates from drug-treated cells. Evidence of a possibly related effect of NFV on viral glycoprotein maturation was also discovered. NFV also inhibited the replication of an HSV-1 thymidine kinase mutant resistant to nucleoside analogues such as acyclovir. Given that NFV is neither a nucleoside mimic nor a known inhibitor of nucleic acid synthesis, this was expected and suggests its potential as a coinhibitor or alternate antiviral therapeutic agent in cases of resistance. IMPORTANCE: Nelfinavir (NFV) is a clinically important antiviral drug that inhibits production of infectious HIV. It was reported to inhibit herpesviruses in cell culture. Herpes simplex virus 1 (HSV-1) infections are common and often associated with several diseases. The studies we describe here confirm and extend earlier findings by investigating how NFV interferes with HSV-1 replication. We show that early steps in virus formation (e.g., assembly of DNA-containing capsids in the nucleus and their movement into the cytoplasm) appear to be unaffected by NFV, whereas later steps (e.g., final envelopment in the cytoplasm and release of infectious virus from the cell) are severely restricted by the drug. Our findings provide the first insight into how NFV inhibits HSV-1 replication and suggest that this drug may have applications for studying the herpesvirus envelopment process. Additionally, NFV may have therapeutic value alone or in combination with other antivirals in treating herpesvirus infections.


Asunto(s)
Antivirales/farmacología , Herpesvirus Humano 1/efectos de los fármacos , Nelfinavir/farmacología , Ensamble de Virus/efectos de los fármacos , Liberación del Virus/efectos de los fármacos , Animales , Línea Celular , Humanos , Microscopía Confocal , Microscopía Electrónica , Ultracentrifugación , Ensayo de Placa Viral
6.
J Gen Virol ; 95(Pt 8): 1755-1769, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24824860

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP-GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present - indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP-GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP-His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP-GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP-GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP-MCP interaction.


Asunto(s)
Proteínas de la Cápside/metabolismo , Herpesvirus Humano 8/fisiología , Proteínas Virales/metabolismo , Ensamble de Virus , Animales , Línea Celular , Análisis Mutacional de ADN , Unión Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Spodoptera
7.
J Virol ; 87(7): 3915-29, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23365436

RESUMEN

All herpesviruses encode a complex of two proteins, referred to as the nuclear egress complex (NEC), which together facilitate the exit of assembled capsids from the nucleus. Previously, we showed that the Kaposi's sarcoma-associated herpesvirus (KSHV) NEC specified by the ORF67 and ORF69 genes when expressed in insect cells using baculoviruses for protein expression forms a complex at the nuclear membrane and remodels these membranes to generate nuclear membrane-derived vesicles. In this study, we have analyzed the functional domains of the KSHV NEC proteins and their interactions. Site-directed mutagenesis of gammaherpesvirus conserved residues revealed functional domains of these two proteins, which in many cases abolish the formation of the NEC and remodeling of nuclear membranes. Small in-frame deletions within ORF67 in all cases result in loss of the ability of the mutant protein to induce cellular membrane proliferation as well as to interact with ORF69. Truncation of the C terminus of ORF67 that resides in the perinuclear space does not impair the functions of ORF67; however, deletion of the transmembrane domain of ORF67 produces a protein that cannot induce membrane proliferation but can still interact with ORF69 in the nucleus and can be tethered to the nuclear membrane by virtue of its interaction with the wild-type-membrane-anchored ORF67. In-frame deletions in ORF69 have varied effects on NEC formation, but all abolish remodeling of nuclear membranes into circular structures. One mutant interacts with ORF67 as well as the wild-type protein but cannot function in membrane curvature and fission events that generate circular vesicles. These studies genetically confirm that ORF67 is required for cellular membrane proliferation and that ORF69 is the factor required to remodel these duplicated membranes into circular-virion-size vesicles. Furthermore, we also investigated the NEC encoded by Epstein-Barr virus (EBV). The EBV complex comprised of BFRF1 and BFLF2 was visualized at the nuclear membrane using autofluorescent protein fusions. BFRF1 is a potent inducer of membrane proliferation; however, BFLF2 cannot remodel these membranes into circular structures. What was evident is the superior remodeling activity of ORF69, which could convert the host membrane proliferations induced by BFRF1 into circular structures.


Asunto(s)
Membrana Celular/metabolismo , Herpesvirus Humano 8/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Virales/metabolismo , Transporte Activo de Núcleo Celular , Animales , Western Blotting , Cartilla de ADN/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Herpesvirus Humano 4/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mutagénesis , Mutagénesis Sitio-Dirigida , Plásmidos/genética , Células Sf9 , Spodoptera , Vesículas Transportadoras/metabolismo , Proteína Fluorescente Roja
8.
Infect Agent Cancer ; 19(1): 7, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38439055

RESUMEN

BACKGROUND: Antiviral therapies that target herpesviruses are clinically important. Nelfinavir is a protease inhibitor that targets the human immunodeficiency virus (HIV) aspartyl protease. Previous studies demonstrated that this drug could also inhibit Kaposi's sarcoma-associated herpesvirus (KSHV) production. Our laboratory demonstrated nelfinavir can effectively inhibit herpes simplex virus type 1 (HSV-1) replication. For HSV-1 we were able to determine that virus capsids were assembled and exited the nucleus but did not mature in the cytoplasm indicating the drug inhibited secondary envelopment of virions. METHODS: For KSHV, we recently derived a tractable cell culture system that allowed us to analyze the virus replication cycle in greater detail. We used this system to further define the stage at which nelfinavir inhibits KSHV replication. RESULTS: We discovered that nelfinavir inhibits KSHV extracellular virus production. This was seen when the drug was incubated with the cells for 3 days and when we pulsed the cells with the drug for 1-5 min. When KSHV infected cells exposed to the drug were examined using ultrastructural methods there was an absence of mature capsids in the nucleus indicating a defect in capsid assembly. Because nelfinavir influences the integrated stress response (ISR), we examined the expression of viral proteins in the presence of the drug. We observed that the expression of many were significantly changed in the presence of drug. The accumulation of the capsid triplex protein, ORF26, was markedly reduced. This is an essential protein required for herpesvirus capsid assembly. CONCLUSIONS: Our studies confirm that nelfinavir inhibits KSHV virion production by disrupting virus assembly and maturation. This is likely because of the effect of nelfinavir on the ISR and thus protein synthesis and accumulation of the essential triplex capsid protein, ORF26. Of interest is that inhibition requires only a short exposure to drug. The source of infectious virus in saliva has not been defined in detail but may well be lymphocytes or other cells in the oral mucosa. Thus, it might be that a "swish and spit" exposure rather than systemic administration would prevent virion production.

9.
J Virol ; 86(1): 594-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22013050

RESUMEN

The Kaposi's sarcoma-associated herpesvirus nuclear egress complex is composed of two proteins, ORF67 and ORF69. In this study, we have recapitulated the KSHV complex by coexpression of these two proteins in insect cells using expression from recombinant baculoviruses. The proteins form a complex at the nuclear membrane as judged by live-cell analysis of protein fusions tagged with green fluorescent protein (GFP) and mCherry. Ultrastructural analysis of infected cells showed that ORF67 expression results in reduplication of the nuclear membrane. When the two proteins are expressed together, numerous virion-size nuclear membrane-derived vesicles were evident at the nuclear margins.


Asunto(s)
Vesículas Citoplasmáticas/virología , Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/fisiología , Membrana Nuclear/virología , Proteínas Virales/genética , Liberación del Virus , Animales , Línea Celular , Herpesvirus Humano 8/genética , Humanos , Unión Proteica , Proteínas Virales/metabolismo
10.
J Virol ; 86(21): 11926-30, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22915821

RESUMEN

Self-assembly of Kaposi's sarcoma-associated herpesvirus capsids occurs when six proteins are coexpressed in insect cells using recombinant baculoviruses; however, if the small capsid protein (SCP) is omitted from the coinfection, assembly does not occur. Herein we delineate and identify precisely the assembly domain and the residues of SCP required for assembly. Hence, six residues, R14, D18, V25, R46, G66, and R70 in the assembly domain, when changed to alanine, completely abolish or reduce capsid assembly.


Asunto(s)
Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Dominios y Motivos de Interacción de Proteínas , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ensamble de Virus , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Baculoviridae , Línea Celular , Vectores Genéticos , Microscopía Electrónica , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Alineación de Secuencia , Virión/ultraestructura
11.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38076893

RESUMEN

Severe acute respiratory syndrome coronavirus (SARS-CoV) is a zoonotic pathogen that can cause severe respiratory disease in humans. The new SARS-CoV-2 is the cause of the current global pandemic termed coronavirus disease 2019 (COVID-19) that has resulted in many millions of deaths world-wide. The virus is a member of the Betacoronavirus family, its genome is a positive strand RNA molecule that encodes for many genes which are required for virus genome replication as well as for structural proteins that are required for virion assembly and maturation. A key determinant of this virus is the Spike (S) protein embedded in the virion membrane and mediates attachment of the virus to the receptor (ACE2). This protein also is required for cell-cell fusion (syncytia) that is an important pathogenic determinant. We have developed a pseudotyped herpes simplex virus type 1 (HSV-1) recombinant virus expressing S protein in the virion envelop. This virus has also been modified to express a Venus fluorescent protein fusion to VP16, a virion protein of HSV-1. The virus expressing Spike can enter cells and generates large multi-nucleated syncytia which are evident by the Venus fluorescence. The HSV-1 recombinant virus is genetically stable and virus amplification can be easily done by infecting cells. This recombinant virus provides a reproducible platform for Spike function analysis and thus adds to the repertoire of pseudotyped viruses expressing Spike.

12.
J Virol ; 85(23): 12698-707, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21957296

RESUMEN

VP23 is a key component of the triplex structure. The triplex, which is unique to herpesviruses, is a complex of three proteins, two molecules of VP23 which interact with a single molecule of VP19C. This structure is important for shell accretion and stability of the protein coat. Previous studies utilized a random transposition mutagenesis approach to identify functional domains of the triplex proteins. In this study, we expand on those findings to determine the key amino acids of VP23 that are required for triplex formation. Using alanine-scanning mutagenesis, we have made mutations in 79 of 318 residues of the VP23 polypeptide. These mutations were screened for function both in the yeast two-hybrid assay for interaction with VP19C and in a genetic complementation assay for the ability to support the replication of a VP23 null mutant virus. These assays identified a number of amino acids that, when altered, abolish VP23 function. Abrogation of virus assembly by a single-amino-acid change bodes well for future development of small-molecule inhibitors of this process. In addition, a number of mutations which localized to a C-terminal region of VP23 (amino acids 205 to 241) were still able to interact with VP19C but were lethal for virus replication when introduced into the herpes simplex virus 1 (HSV-1) KOS genome. The phenotype of many of these mutant viruses was the accumulation of large open capsid shells. This is the first demonstration of capsid shell accumulation in the presence of a lethal VP23 mutation. These data thus identify a new domain of VP23 that is required for or regulates capsid shell closure during virus assembly.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Herpes Simple/virología , Herpesvirus Humano 1/metabolismo , Virión/ultraestructura , Replicación Viral , Secuencia de Aminoácidos , Animales , Western Blotting , Cápside/química , Proteínas de la Cápside/genética , Chlorocebus aethiops , Prueba de Complementación Genética , Genoma Viral , Herpes Simple/genética , Herpes Simple/metabolismo , Herpesvirus Humano 1/genética , Humanos , Datos de Secuencia Molecular , Mutagénesis , Plásmidos , Técnicas del Sistema de Dos Híbridos , Células Vero , Ensamble de Virus
13.
Protein Expr Purif ; 77(1): 80-5, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21193049

RESUMEN

The herpesvirus triplex is a key structural feature of the capsids of these viruses. It is composed of a hetero-trimer of one molecule of VP19C and two molecules of VP23. It acts to stabilize capsid shells by connecting the capsomeric subunits together. Although it has been possible to over-express in Escherichia coli and purify one component of the triplex, VP23; this has not been the case with VP19C. Because an N-terminal polypeptide of VP19C could be expressed and purified using a GST affinity tag, a directed mutagenic approach was used to determine the region of VP19C that caused the block in expression of the full-length protein. The region was mapped to reside between VP19C amino acids 145 and 150 using truncation gene fusions and subsequently a single amino acid, R146 was identified which when changed to alanine, allowed stable expression and accumulation of VP19C. This change does not affect the biological function of VP19C. Finally using this altered VP19C, co-expression of the triplex proteins in the same cell has been achieved making it now possible to purify this complex for biophysical and structural studies.


Asunto(s)
Sustitución de Aminoácidos/fisiología , Proteínas de la Cápside/biosíntesis , Proteínas de la Cápside/química , Escherichia coli/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Secuencia de Bases , Proteínas de la Cápside/genética , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Herpesvirus Humano 2/genética , Reacción en Cadena de la Polimerasa , Ingeniería de Proteínas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
14.
J Vis Exp ; (177)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34806698

RESUMEN

There are numerous published protocols for plaquing viruses, including references within primary literature for methodology. However, plaquing viruses can be difficult to perform, requiring focus on its specifications and refinement. It is an incredibly challenging method for new students to master, mainly because it requires meticulous attention to the most minute details. This demonstration of plaquing herpes simplex viruses should help those who have struggled with visualizing the method, especially its nuances, over the years. While this manuscript is based on the same principles of standard plaquing methodology, it differs in that it contains a detailed description of (1) how best to handle host cells to avoid disruption during the process, (2) a more useful viscous medium than agarose to limit the diffusion of virions, and (3) a simple fixation and staining procedure that produces reliably reproducible results. Furthermore, the accompanying video helps demonstrate the finer distinctions in the process, which are frequently missed when instructing others on conducting plaque assays.


Asunto(s)
Herpes Simple , Simplexvirus , Medios de Cultivo , Humanos , Virión
15.
Nat Commun ; 10(1): 1997, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040288

RESUMEN

Human G protein-coupled receptors (GPCRs) respond to various ligands and stimuli. However, GPCRs rely on membrane for proper folding, making their biochemical properties difficult to study. By displaying GPCRs in viral envelopes, we fabricated a Virion Display (VirD) array containing 315 non-olfactory human GPCRs for functional characterization. Using this array, we found that 10 of 20 anti-GPCR mAbs were ultra-specific. We further demonstrated that those failed in the mAb assays could recognize their canonical ligands, suggesting proper folding. Next, using two peptide ligands on the VirD-GPCR array, we identified expected interactions and novel interactions. Finally, we screened the array with group B Streptococcus, a major cause of neonatal meningitis, and demonstrated that inhibition of a newly identified target, CysLTR1, reduced bacterial penetration both in vitro and in vivo. We believe that the VirD-GPCR array holds great potential for high-throughput screening for small molecule drugs, affinity reagents, and ligand deorphanization.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Virión/metabolismo , Animales , Western Blotting , Chlorocebus aethiops , Técnica del Anticuerpo Fluorescente , Células HEK293 , Células HeLa , Humanos , Proteómica/métodos , Streptococcus/metabolismo , Células Vero , Virología/métodos
16.
J Virol Methods ; 261: 67-70, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30092252

RESUMEN

Cre-mediated recombination is a widely used technique for the re-arrangement of DNA sequences that are bracketed by loxP recognition sites. This bacteriophage P1 enzyme is commonly used to excise the bacterial artificial chromosome (BAC) sequence, a vector sequence used for large herpesvirus genomes for the purposes of propagation and manipulation in Escherichia coli. Most methods utilize cell lines that can be induced for the expression of Cre enzyme to facilitate this excision. In addition, methods have been developed that express Cre from the virus genome and enable auto-excision of the BAC plasmid. We report a versatile and rapid in vitro method based on purified Cre enzyme to carry out the same process in a test tube and does not require cell line generation or cloning into the virus genome. This method greatly increases the repertoire of methods available to modify the genome prior to reconstitution of virus infectivity in a mammalian host.


Asunto(s)
Cromosomas Artificiales Bacterianos , Genoma Viral , Herpesviridae/genética , Integrasas/metabolismo , Recombinación Genética , Eliminación de Secuencia , Genética Inversa/métodos , Virología/métodos
17.
Virus Res ; 236: 9-13, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28456575

RESUMEN

Self-assembly of herpesvirus capsids can be accomplished in heterologous expression systems provided all six capsid proteins are present. We have demonstrated the assembly of icosahedral Kaposi's sarcoma-associated herpesvirus (KSHV) capsids in insect cells using the baculovirus expression system. Using this self-assembly system we investigated whether we could add additional capsid associated proteins and determine their incorporation into the assembled capsid. We chose the capsid vertex-specific component (CVSC) proteins encoded by open reading frames (ORFs) 19 and 32 to test this. This complex sits on the capsid vertex and is important for capsid maturation in herpesvirus-infected cells. Co-immunoprecipitation assays were used to initially confirm a bi-molecular interaction between ORF19 and ORF32. Both proteins also precipitated the triplex proteins of the capsid shell (ORF26 and ORF62) as well as the major capsid protein (ORF25). Capsid immunoprecipitation assays revealed the incorporation of ORF19 as well as ORF32 into assembled capsids. Similar experiments also showed that the incorporation of each protein occurred independent of the other. These studies reveal biochemically how the KSHV CVSC interacts with the capsid shell.


Asunto(s)
Cápside/metabolismo , Herpesvirus Humano 8/fisiología , Sarcoma de Kaposi/virología , Proteínas Virales/metabolismo , Ensamble de Virus , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Herpesvirus Humano 8/genética , Humanos , Sistemas de Lectura Abierta , Proteínas Virales/genética
18.
J Virol Methods ; 241: 46-51, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28012897

RESUMEN

Our laboratory was one of the first to engineer a live fluorescent tag, enhanced green fluorescent protein (eGFP), that marked the capsid of herpes simplex virus type 1 (HSV-1) and subsequently maturing virus as the particle made its way to the cell surface. In the present study we sought to increase the repertoire of colors available as fusion to the small capsid protein, VP26, so that they can be used alone or in conjunction with other fluorescent tags (fused to other HSV proteins) to follow the virus as it enters and replicates within the cell. We have now generated viruses expressing VP26 fusions with Cerulean, Venus, mOrange, tdTomato, mCherry, and Dronpa3 fluorescent proteins. These fusions were made in a repaired UL35 gene (VP26) background. These fusions do not affect the replication properties of the virus expressing the fusion polypeptide and the fusion tag was stably associated with intranuclear capsids and mature virions. Of note we could not isolate viruses expressing fusions with fluorescent proteins that have a tendency to dimerize.


Asunto(s)
Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Herpesvirus Humano 1/ultraestructura , Animales , Línea Celular , Membrana Celular/genética , Chlorocebus aethiops , Color , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/crecimiento & desarrollo , Herpesvirus Humano 1/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ingeniería de Proteínas , Proteínas Recombinantes de Fusión/química , Células Vero , Replicación Viral , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA