Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 568(7752): E8-E10, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30944483

RESUMEN

In this Article, owing to issues with the first 30 nucleotides of the sgRNA, which run in the opposite direction, corrections have been made to the Protein Data Bank (PDB) accessions in the 'Data availability' section, and this also affects Figs. 3, 4, Extended Data Fig. 6, Supplementary Table 1 and Supplementary Video 1. The original Article has been corrected online. See the accompanying Amendment for further details.

2.
Nature ; 566(7743): 218-223, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30718774

RESUMEN

The RNA-guided CRISPR-associated (Cas) proteins Cas9 and Cas12a provide adaptive immunity against invading nucleic acids, and function as powerful tools for genome editing in a wide range of organisms. Here we reveal the underlying mechanisms of a third, fundamentally distinct RNA-guided genome-editing platform named CRISPR-CasX, which uses unique structures for programmable double-stranded DNA binding and cleavage. Biochemical and in vivo data demonstrate that CasX is active for Escherichia coli and human genome modification. Eight cryo-electron microscopy structures of CasX in different states of assembly with its guide RNA and double-stranded DNA substrates reveal an extensive RNA scaffold and a domain required for DNA unwinding. These data demonstrate how CasX activity arose through convergent evolution to establish an enzyme family that is functionally separate from both Cas9 and Cas12a.


Asunto(s)
Proteínas Asociadas a CRISPR/clasificación , Proteínas Asociadas a CRISPR/ultraestructura , Sistemas CRISPR-Cas/genética , Edición Génica , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN/ultraestructura , División del ADN , Escherichia coli/genética , Evolución Molecular , Silenciador del Gen , Genoma Bacteriano/genética , Genoma Humano/genética , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Dominios Proteicos , ARN Guía de Kinetoplastida/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(49): e2210539119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36454757

RESUMEN

Cyanobacteria rely on CO2-concentrating mechanisms (CCMs) to grow in today's atmosphere (0.04% CO2). These complex physiological adaptations require ≈15 genes to produce two types of protein complexes: inorganic carbon (Ci) transporters and 100+ nm carboxysome compartments that encapsulate rubisco with a carbonic anhydrase (CA) enzyme. Mutations disrupting any of these genes prohibit growth in ambient air. If any plausible ancestral form-i.e., lacking a single gene-cannot grow, how did the CCM evolve? Here, we test the hypothesis that evolution of the bacterial CCM was "catalyzed" by historically high CO2 levels that decreased over geologic time. Using an E. coli reconstitution of a bacterial CCM, we constructed strains lacking one or more CCM components and evaluated their growth across CO2 concentrations. We expected these experiments to demonstrate the importance of the carboxysome. Instead, we found that partial CCMs expressing CA or Ci uptake genes grew better than controls in intermediate CO2 levels (≈1%) and observed similar phenotypes in two autotrophic bacteria, Halothiobacillus neapolitanus and Cupriavidus necator. To understand how CA and Ci uptake improve growth, we model autotrophy as colimited by CO2 and HCO3-, as both are required to produce biomass. Our experiments and model delineated a viable trajectory for CCM evolution where decreasing atmospheric CO2 induces an HCO3- deficiency that is alleviated by acquisition of CA or Ci uptake, thereby enabling the emergence of a modern CCM. This work underscores the importance of considering physiology and environmental context when studying the evolution of biological complexity.


Asunto(s)
Dióxido de Carbono , Anhidrasas Carbónicas , Escherichia coli/genética , Bacterias , Transporte Biológico , Anhidrasas Carbónicas/genética
4.
Nat Chem Biol ; 17(9): 982-988, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34354262

RESUMEN

Direct, amplification-free detection of RNA has the potential to transform molecular diagnostics by enabling simple on-site analysis of human or environmental samples. CRISPR-Cas nucleases offer programmable RNA-guided RNA recognition that triggers cleavage and release of a fluorescent reporter molecule, but long reaction times hamper their detection sensitivity and speed. Here, we show that unrelated CRISPR nucleases can be deployed in tandem to provide both direct RNA sensing and rapid signal generation, thus enabling robust detection of ~30 molecules per µl of RNA in 20 min. Combining RNA-guided Cas13 and Csm6 with a chemically stabilized activator creates a one-step assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA extracted from respiratory swab samples with quantitative reverse transcriptase PCR (qRT-PCR)-derived cycle threshold (Ct) values up to 33, using a compact detector. This Fast Integrated Nuclease Detection In Tandem (FIND-IT) approach enables sensitive, direct RNA detection in a format that is amenable to point-of-care infection diagnosis as well as to a wide range of other diagnostic or research applications.


Asunto(s)
COVID-19/genética , Sistemas CRISPR-Cas/genética , ARN Viral/genética , SARS-CoV-2/genética , Humanos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
medRxiv ; 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33791736

RESUMEN

Direct, amplification-free detection of RNA has the potential to transform molecular diagnostics by enabling simple on-site analysis of human or environmental samples. CRISPR-Cas nucleases offer programmable RNA-guided recognition of RNA that triggers cleavage and release of a fluorescent reporter molecule1,2, but long reaction times hamper sensitivity and speed when applied to point-of-care testing. Here we show that unrelated CRISPR nucleases can be deployed in tandem to provide both direct RNA sensing and rapid signal generation, thus enabling robust detection of ~30 RNA copies/microliter in 20 minutes. Combining RNA-guided Cas13 and Csm6 with a chemically stabilized activator creates a one-step assay that detected SARS-CoV-2 RNA from nasopharyngeal samples with PCR-derived Ct values up to 29 in microfluidic chips, using a compact imaging system. This Fast Integrated Nuclease Detection In Tandem (FIND-IT) approach enables direct RNA detection in a format amenable to point-of-care infection diagnosis, as well as to a wide range of other diagnostic or research applications.

7.
Nat Microbiol ; 4(12): 2204-2215, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406332

RESUMEN

Bacterial autotrophs often rely on CO2 concentrating mechanisms (CCMs) to assimilate carbon. Although many CCM proteins have been identified, a systematic screen of the components of CCMs is lacking. Here, we performed a genome-wide barcoded transposon screen to identify essential and CCM-related genes in the γ-proteobacterium Halothiobacillus neapolitanus. Screening revealed that the CCM comprises at least 17 and probably no more than 25 genes, most of which are encoded in 3 operons. Two of these operons (DAB1 and DAB2) contain a two-gene locus that encodes a domain of unknown function (Pfam: PF10070) and a putative cation transporter (Pfam: PF00361). Physiological and biochemical assays demonstrated that these proteins-which we name DabA and DabB, for DABs accumulate bicarbonate-assemble into a heterodimeric complex, which contains a putative ß-carbonic anhydrase-like active site and functions as an energy-coupled inorganic carbon (Ci) pump. Interestingly, DAB operons are found in a diverse range of bacteria and archaea. We demonstrate that functional DABs are present in the human pathogens Bacillus anthracis and Vibrio cholerae. On the basis of these results, we propose that DABs constitute a class of energized Ci pumps and play a critical role in the metabolism of Ci throughout prokaryotic phyla.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Proteínas Portadoras/metabolismo , Células Procariotas/metabolismo , Archaea/enzimología , Archaea/genética , Archaea/metabolismo , Bacillus anthracis/metabolismo , Bacterias/enzimología , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/genética , Elementos Transponibles de ADN/genética , Compuestos de Diazonio , Genes Bacterianos/genética , Genes Esenciales , Halothiobacillus/genética , Halothiobacillus/metabolismo , Mutagénesis , Operón , Ácidos Sulfanílicos , Vibrio cholerae/metabolismo
8.
J Fungi (Basel) ; 5(1)2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30577430

RESUMEN

The PTEN/PI3K/mTOR signal transduction pathway is involved in the regulation of biological processes such as metabolism, cell growth, cell proliferation, and apoptosis. This pathway has been extensively studied in mammals, leading to the conclusion that PTEN is a major tumor suppressor gene. PTEN orthologues have been characterized in a variety of organisms, both vertebrates and non-vertebrates, and studies of the associated PTEN/PI3K/mTOR pathway indicate that it is widely conserved. Studies in fungal systems indicated a role of PTEN in fungal defense mechanisms in Candida albicans, and in the developmental process of sporulation in Saccharomyces cerevisiae. The present study was aimed at investigating the role of the PTEN ortholog, ptn1, in Ustilago maydis, the pathogen of maize. U. maydis ptn1 mutant strains where ptn1 gene is deleted or overexpressed were examined for phenotypes associate with mating, virulence and spore formation. While the overexpression of ptn1 had no substantial effects on virulence, ptn1 deletion strains showed slight reductions in mating efficiency and significant reductions in virulence; tumor formation on stem and/or leaves were severely reduced. Moreover, tumors, when present, had significantly lower levels of mature teliospores, and the percent germination of such spores was similarly reduced. Thus, ptn1 is required for these important aspects of virulence in this fungus.

9.
NPJ Syst Biol Appl ; 3: 16035, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28725483

RESUMEN

A major aspect of microbial metabolic engineering is the development of chassis hosts that have favorable global metabolic phenotypes, and can be further engineered to produce a variety of compounds. In this work, we focus on the problem of decoupling growth and production in the model bacterium Escherichia coli, and in particular on the maintenance of active metabolism during nitrogen-limited stationary phase. We find that by overexpressing the enzyme PtsI, a component of the glucose uptake system that is inhibited by α-ketoglutarate during nitrogen limitation, we are able to achieve a fourfold increase in metabolic rates. Alternative systems were also tested: chimeric PtsI proteins hypothesized to be insensitive to α-ketoglutarate did not improve metabolic rates under the conditions tested, whereas systems based on the galactose permease GalP suffered from energy stress and extreme sensitivity to expression level. Overexpression of PtsI is likely to be a useful arrow in the metabolic engineer's quiver as productivity of engineered pathways becomes limited by central metabolic rates during stationary phase production processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA