Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Blood Cells Mol Dis ; 93: 102640, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34991062

RESUMEN

Progressive pancytopenia is a common feature observed in DNA crosslink repair deficiency disorder, Fanconi anemia (FA). However, this phenotype has not been recapitulated in single FA gene knockout animal models. In this study, we analyzed hematological characteristics in zebrafish null mutants for two FA genes, fanca and fanco. In adult mutants, we demonstrate age-associated reduction in blood cell counts for all lineages, resembling progressive pancytopenia in FA patients. In larval mutants, we demonstrate vascular injury-induced thrombosis defects, particularly upon treatment with crosslinking agent diepoxybutane (DEB), indicating DNA damage induced inefficiency of thrombocytes.


Asunto(s)
Anemia de Fanconi , Pancitopenia , Trombosis , Animales , Daño del ADN , Anemia de Fanconi/genética , Humanos , Pancitopenia/genética , Trombosis/genética , Pez Cebra
2.
Blood Coagul Fibrinolysis ; 35(5): 238-247, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38874909

RESUMEN

The aim of this study is to characterize zebrafish coagulation cofactors fviii and fv mutant fish and assess if they phenocopy classical hemophilia A and factor V deficiency in humans. The embryos from fviii and fv zebrafish heterozygote mutants generated by ENU mutagenesis were purchased from the ZIRC repository. They were reared to adulthood and genotyped. The heterozygote male and female were crossed to get homozygote, heterozygote, and wild-type fish. Functional kinetic coagulation assays and bleeding assays were performed on normal and mutant adult fish, and venous laser injury assays were performed on the larvae. The DNA from fviii and fv mutants were sequenced to confirm if they have a premature stop codon in exon 19, and in exon 2, respectively, and in both mutants, the amino acid glutamine is replaced with a stop codon. Homozygous and heterozygous 5 days post fertilization (dpf) larvae for fviii and fv deficient mutants exhibited prolonged time to occlusion after venous laser injury compared to wild-type controls. The homozygous and heterozygous fviii adult mutants showed modest bleeding and delayed fibrin formation in the kinetic partial thromboplastin time (kPTT) assay with their plasma. fv homozygous larvae had poor survival beyond 12 dpf. However, heterozygous fv mutants exhibited heavy bleeding and prolonged fibrin formation in the kPTT and kPT assay compared with wild-type siblings. Our characterization showed fviii and fv mutants from ZIRC phenocopied to a considerable extent classical hemophilia A and factor V deficiency in humans, respectively. These models should be useful in studying and developing novel drugs that reverse the phenotype and in generating suppressor mutations to identify novel factors that compensate for these deficiencies.


Asunto(s)
Modelos Animales de Enfermedad , Deficiencia del Factor V , Factor VIII , Hemofilia A , Pez Cebra , Animales , Hemofilia A/genética , Hemofilia A/sangre , Factor VIII/genética , Factor VIII/metabolismo , Deficiencia del Factor V/genética , Factor V/genética , Mutación , Femenino , Masculino , Coagulación Sanguínea , Humanos
3.
Res Sq ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37162944

RESUMEN

Previous studies have shown that human platelets and megakaryocytes carry microRNAs suggesting their role in platelet function and megakaryocyte development, respectively. However, a comprehensive study on the microRNAs and their targets has not been undertaken. Zebrafish thrombocytes could be used as a model to study their role in megakaryocyte maturation and platelet function because thrombocytes have both megakaryocyte features and platelet properties. In our laboratory, we identified 15 microRNAs in thrombocytes using single-cell RNA sequencing. We knocked down each of these 15 microRNAs by the piggyback method and found knockdown of three microRNAs, mir-7148, let-7b , and mir-223 in adult zebrafish led to an increase in the percentage of thrombocytes. Functional thrombocyte analysis using plate tilt assay showed no modulatory effect of the three microRNAs on thrombocyte aggregation/agglutination. We also found enhanced thrombosis using arterial laser thrombosis assay in a group of zebrafish larvae after mir-7148, let-7b , and mir-223 knockdowns. These results suggested mir-7148, let-7b , and mir-223 are repressors for thrombocyte production. We then explored miRWalk database for let-7b downstream targets and then selected those that are expressed in thrombocytes, and from this list based on their role in differentiation selected 14 genes, rorca, tgif1, rfx1a, deaf1, zbtb18, mafba, cebpa, spi1a, spi1b, fhl3b, ikzf1, irf5, irf8 , and lbx1b that encode transcriptional regulators. The qRT-PCR analysis of expression levels of the above genes following let-7b knockdown showed changes in the expression of 13 targets. We then studied the effect of the 13 targets on thrombocyte production and identified 5 genes, irf5, tgif1, irf8, cebpa , and rorca that showed thrombocytosis and one gene, ikzf1 that showed thrombocytopenia. Furthermore, we tested whether mir-223 regulates any of the above 13 transcription factors after mir-223 knockdown using qRT-PCR. Six of the 13 genes showed similar gene expression as observed with let-7b knockdown and 7 genes showed opposing results. Thus, our results suggested a possible regulatory network in common with both let-7b and mir-223 . We also identified that tgif1, cebpa, ikzf1, irf5 , irf8 , and ikzf1 play a role in thrombopoiesis. Since the ikzf1 gene showed a differential expression profile in let-7b and mir-223 knockdowns but resulted in thrombocytopenia in ikzf1 knockdown in both adults and larvae we also studied an ikzf1 mutant and showed the mutant had thrombocytopenia. Taken together, these studies showed that thrombopoiesis is controlled by a network of transcription regulators that are regulated by multiple microRNAs in both positive and negative manner resulting in overall inhibition of thrombopoiesis.

4.
Sci Rep ; 13(1): 16066, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752184

RESUMEN

Previous studies have shown that human platelets and megakaryocytes carry microRNAs suggesting their role in platelet function and megakaryocyte development, respectively. However, a comprehensive study on the microRNAs and their targets has not been undertaken. Zebrafish thrombocytes could be used as a model to study their role in megakaryocyte maturation and platelet function because thrombocytes have both megakaryocyte features and platelet properties. In our laboratory, we identified 15 microRNAs in thrombocytes using single-cell RNA sequencing. We knocked down each of these 15 microRNAs by the piggyback method and found knockdown of three microRNAs, mir-7148, let-7b, and mir-223 in adult zebrafish led to an increase in the percentage of thrombocytes. Functional thrombocyte analysis using plate tilt assay showed no modulatory effect of the three microRNAs on thrombocyte aggregation/agglutination. We also found enhanced thrombosis using arterial laser thrombosis assay in a group of zebrafish larvae after mir-7148, let-7b, and mir-223 knockdowns. These results suggested mir-7148, let-7b, and mir-223 are repressors for thrombocyte production. We then explored miRWalk database for let-7b downstream targets and then selected those that are expressed in thrombocytes, and from this list based on their role in differentiation selected 14 genes, rorca, tgif1, rfx1a, deaf1, zbtb18, mafba, cebpa, spi1a, spi1b, fhl3b, ikzf1, irf5, irf8, and lbx1b that encode transcriptional regulators. The qRT-PCR analysis of expression levels of the above genes following let-7b knockdown showed changes in the expression of 13 targets. We then studied the effect of the 13 targets on thrombocyte production and identified 5 genes, irf5, tgif1, irf8, cebpa, and rorca that showed thrombocytosis and one gene, ikzf1 that showed thrombocytopenia. Furthermore, we tested whether mir-223 regulates any of the above 13 transcription factors after mir-223 knockdown using qRT-PCR. Six of the 13 genes showed similar gene expression as observed with let-7b knockdown and 7 genes showed opposing results. Thus, our results suggested a possible regulatory network in common with both let-7b and mir-223. We also identified that tgif1, cebpa, ikzf1, irf5, irf8, and ikzf1 play a role in thrombopoiesis. Since the ikzf1 gene showed a differential expression profile in let-7b and mir-223 knockdowns but resulted in thrombocytopenia in ikzf1 knockdown in both adults and larvae we also studied an ikzf1 mutant and showed the mutant had thrombocytopenia. Taken together, these studies showed that thrombopoiesis is controlled by a network of transcription regulators that are regulated by multiple microRNAs in both positive and negative manner resulting in overall inhibition of thrombopoiesis.


Asunto(s)
MicroARNs , Trombocitopenia , Trombosis , Adulto , Humanos , Animales , Trombopoyesis/genética , Pez Cebra/genética , Factores Reguladores del Interferón , MicroARNs/genética
5.
Blood Coagul Fibrinolysis ; 33(5): 272-279, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35802508

RESUMEN

The aim of this study is to model classical Bernard Soulier Syndrome in the zebrafish by targeting Gp1ba. We obtained gp1ba mutant embryos from Zebrafish International Resource Center and grew them to adulthood. The tail clips from these fish were used to prepare DNA and sequenced to identify heterozygotes. They were then bred to obtain homozygotes. The mutation was confirmed by DNA sequencing as a termination codon UAA in place of AAA codon at position 886 in the gp1ba transcript. Thus, at the Pro-295, the Gp1ba protein could be terminated. The blood from gp1ba homozygous and heterozygous mutants showed decreased ristocetin-mediated agglutination in the whole blood agglutination assay. The gp1ba heterozygous and homozygous larvae were subjected to a laser-assisted arterial thrombosis assay, and the results showed the prolonged occlusion in the caudal artery. These results suggested that the gp1ba mutant had a bleeding phenotype. The blood smears from the adult gp1ba, heterozygous and homozygous mutants, showed macrothrombocytes, similar to the human GP1BA deficiency that showed giant platelets. The bleeding assay on these heterozygous and homozygous mutants showed greater bleeding than wildtype, confirming the above findings. Taken together, the characterization of gp1ba zebrafish mutant suggested an autosomal dominant mode of inheritance. The zebrafish gp1ba mutant models classical Bernard Soulier Syndrome and could be used for reversing this phenotype to identify novel factors by the genome-wide piggyback knockdown method.


Asunto(s)
Síndrome de Bernard-Soulier , Animales , Síndrome de Bernard-Soulier/genética , Plaquetas/metabolismo , Hemorragia/genética , Hemorragia/metabolismo , Heterocigoto , Homocigoto , Complejo GPIb-IX de Glicoproteína Plaquetaria/genética , Pez Cebra/genética , Pez Cebra/metabolismo
6.
Sci Rep ; 11(1): 15238, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315984

RESUMEN

Tissue factor pathway inhibitor (TFPI) is an anticoagulant protein that inhibits factor VIIa and Xa in the coagulation cascade. It has been shown that forkhead box P3 protein is a TFPI transcriptional repressor. However, there are no studies on chromatin remodeling that control TFPI expression. We hypothesized that the genome-wide knockdowns of the chromatin binding and regulatory proteins (CBRPs) in zebrafish could identify novel tfpia gene regulators. As an initial step, we selected 69 CBRP genes from the list of zebrafish thrombocyte-expressed genes. We then performed a 3-gene piggyback knockdown screen of these 69 genes, followed by quantification of tfpia mRNA levels. The results revealed that knockdown of brd7, ing2, ing3, ing4, and suz12b increased tfpia mRNA levels. The simultaneous knockdown of these 5 genes also increased tfpia mRNA levels. We also performed individual gene and simultaneous 5-gene knockdowns on the 5 genes in zebrafish larvae. We found that after laser injury, it took a longer time for the formation of the thrombus to occlude the caudal vessel compared to the control larvae. We then treated the larvae and adults with a chemical UNC6852 known to proteolytically degrade polycomb repressor complex 2, where SUZ12 is a member, and observed prolongation of time to occlude (TTO) the caudal vein after laser injury and increased tfpia mRNA levels in larvae and adults, respectively. In summary, our results have identified novel epigenetic regulators for tfpia and exploited this information to discover a drug that enhances tfpia mRNA levels and prolongation of TTO. This discovery provides the basis for testing whether UNC6852 could be used as an antithrombotic drug. This approach could be used to study the regulation of other plasma proteins, including coagulant and anticoagulant factors.


Asunto(s)
Antitrombinas/farmacología , Cromatina/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Animales , Sistemas de Liberación de Medicamentos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA