Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 235(4): 1351-1364, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35582952

RESUMEN

The least-cost economic theory of photosynthesis shows that water and nitrogen are mutually substitutable resources to achieve a given carbon gain. However, vegetation in the Sahel has to cope with the dual challenge imposed by drought and nutrient-poor soils. We addressed how variation in leaf nitrogen per area (Narea ) modulates leaf oxygen and carbon isotopic composition (δ18 O, δ13 C), as proxies of stomatal conductance and water-use efficiency, across 34 Sahelian woody species. Dryland species exhibited diverging leaf δ18 O and δ13 C values, indicating large interspecific variation in time-integrated stomatal conductance and water-use efficiency. Structural equation modeling revealed that leaf Narea is a pivotal trait linked to multiple water-use traits. Leaf Narea was positively linked to both δ18 O and δ13 C, suggesting higher carboxylation capacity and tighter stomatal regulation of transpiration in N-rich species, which allows them to achieve higher water-use efficiency and more conservative water use. These adaptations represent a key physiological advantage of N-rich species, such as legumes, that could contribute to their dominance across many dryland regions. This is the first report of a robust mechanistic link between leaf Narea and δ18 O in dryland vegetation that is consistent with core principles of plant physiology.


Asunto(s)
Nitrógeno , Árboles , Isótopos de Carbono , Fotosíntesis/fisiología , Hojas de la Planta , Transpiración de Plantas , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA