Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38791575

RESUMEN

Chromosomal instability is a hallmark of colorectal carcinogenesis and produces an accumulation of different forms of aneuploidies or broad copy number aberrations. Colorectal cancer is characterized by gain-type broad copy number aberrations, specifically in Chr20, Chr8q, Chr13 and Chr7, but their roles and mechanisms in cancer progression are not fully understood. It has been suggested that broad copy number gains might contribute to tumor development through the so-called caricature transcriptomic effect. We intend to investigate the impact of broad copy number gains on long non-coding RNAs' expression in colorectal cancer, given their well-known role in oncogenesis. The influence of such chromosomal aberrations on lncRNAs' transcriptome profile was investigated by SNP and transcriptome arrays in our series of colorectal cancer samples and cell lines. The correlation between aneuploidies and transcriptomic profiles led us to obtain a class of Over-UpT lncRNAs, which are transcripts upregulated in CRC and further overexpressed in colon tumors bearing specific chromosomal aberrations. The identified lncRNAs can contribute to a wide interaction network to establish the cancer driving effect of gain-type aneuploidies.


Asunto(s)
Aneuploidia , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Variaciones en el Número de Copia de ADN , Transcriptoma , Femenino , Línea Celular Tumoral , Perfilación de la Expresión Génica , Masculino , Inestabilidad Cromosómica , Persona de Mediana Edad , Aberraciones Cromosómicas , Polimorfismo de Nucleótido Simple
2.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925480

RESUMEN

Conventional chemotherapy for acute myeloid leukemia regimens generally encompass an intensive induction phase, in order to achieve a morphological remission in terms of bone marrow blasts (<5%). The majority of cases are classified as Primary Induction Response (PIR); unfortunately, 15% of children do not achieve remission and are defined Primary Induction Failure (PIF). This study aims to characterize the gene expression profile of PIF in children with Acute Myeloid Leukemia (AML), in order to detect molecular pathways dysfunctions and identify potential biomarkers. Given that NUP98-rearrangements are enriched in PIF-AML patients, we investigated the association of NUP98-driven genes in primary chemoresistance. Therefore, 85 expression arrays, deposited on GEO database, and 358 RNAseq AML samples, from TARGET program, were analyzed for "Differentially Expressed Genes" (DEGs) between NUP98+ and NUP98-, identifying 110 highly confident NUP98/PIF-associated DEGs. We confirmed, by qRT-PCR, the overexpression of nine DEGs, selected on the bases of the diagnostic accuracy, in a local cohort of PIF patients: SPINK2, TMA7, SPCS2, CDCP1, CAPZA1, FGFR1OP2, MAN1A2, NT5C3A and SRP54. In conclusion, the integrated analysis of NUP98 mutational analysis and transcriptome profiles allowed the identification of novel putative biomarkers for the prediction of PIF in AML.


Asunto(s)
Biomarcadores de Tumor/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas de Complejo Poro Nuclear/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Quinasa 6 Dependiente de la Ciclina/genética , Femenino , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Reordenamiento Génico , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Lactante , Recién Nacido , Masculino , Familia de Multigenes , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Insuficiencia del Tratamiento
3.
Int J Mol Sci ; 20(21)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652751

RESUMEN

The awareness of genome complexity brought a radical approach to the study of transcriptome, opening eyes to single RNAs generated from two or more adjacent genes according to the present consensus. This kind of transcript was thought to originate only from chromosomal rearrangements, but the discovery of readthrough transcription opens the doors to a new world of fusion RNAs. In the last years many possible intergenic cis-splicing mechanisms have been proposed, unveiling the origins of transcripts that contain some exons of both the upstream and downstream genes. In some cases, alternative mechanisms, such as trans-splicing and transcriptional slippage, have been proposed. Five databases, containing validated and predicted Fusion Transcripts of Adjacent Genes (FuTAGs), are available for the scientific community. A comparative analysis revealed that two of them contain the majority of the results. A complete analysis of the more widely characterized FuTAGs is provided in this review, including their expression pattern in normal tissues and in cancer. Gene structure, intergenic splicing patterns and exon junction sequences have been determined and here reported for well-characterized FuTAGs. The available functional data and the possible roles in cancer progression are discussed.


Asunto(s)
Neoplasias/genética , Trans-Empalme , Regulación Neoplásica de la Expresión Génica , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
iScience ; 26(6): 106949, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37378330

RESUMEN

Protease temporary inhibitors are true substrates that bind the catalytic site with high affinity but are slowly degraded, thus acting as inhibitor for a defined time window. Serine peptidase inhibitor Kazal type (SPINK) family is endowed with such functional property whose physiological meaning is poorly explored. High expression of SPINK2 in some hematopoietic malignancies prompted us to investigate its role in adult human bone marrow. We report here the physiological expression of SPINK2 in hematopoietic stem and progenitor cells (HSPCs) and mobilized cluster differentiation 34 (CD34)+ cells. We determined the SPINK2 degradation constant and derived a mathematical relationship predicting the zone of inhibited target protease activity surrounding the SPINK2-secreting HSPCs. Analysis of putative target proteases for SPINK2 revealed the expression of PRSS2 and PRSS57 in HSPCs. Our combined results suggest that SPINK2 and its target serine proteases might play a role in the intercellular communication within the hematopoietic stem cell niche.

5.
Neuropeptides ; 79: 101997, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31784044

RESUMEN

Olfactory Ensheathing Cells (OECs) are glial cells able to secrete different neurotrophic growth factors and thus promote axonal growth, also acting as a mechanical support. In the olfactory system, during development, they drive the non-myelinated axons of the Olfactory Receptor Neurons (ORNs) towards the Olfactory Bulb (OB). Ghrelin (Ghre), a gut-brain peptide hormone, and its receptor (GHS-R 1a) are expressed in different parts of the central nervous system. In the last few years, this peptide has stimulated particular interest as results show it to be a neuroprotective factor with antioxidant, anti-inflammatory and anti-apoptotic properties. Our previous studies showed that OB mitral cells express Ghre, thus being able to play an important role in regulating food behavior in response to odors. In this study, we investigated the presence of Ghre and GHS-R 1a in primary mouse OECs. The expression of both Ghre and its receptor was assessed by an immunocytochemical technique, Western Blot and Polymerase Chain Reaction (PCR) analysis. Our results demonstrated that OECs are able to express both Ghre and GHS-R 1a and that these proteins are detectable after extensive passages in vitro; in addition, PCR analysis further confirmed these data. Therefore, we can hypothesize that Ghre and GHS-R 1a interact with a reinforcement function, in the peripheral olfactory circuit, providing a neurotrophic support to the synaptic interaction between ORNs and mitral cells.


Asunto(s)
Ghrelina/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neuroglía/metabolismo , Bulbo Olfatorio/metabolismo , Receptores de Ghrelina/metabolismo , Animales , Células Cultivadas , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA