Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
J Biol Chem ; 287(13): 10344-10354, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22318734

RESUMEN

Dysferlin is a transmembrane protein implicated in surface membrane repair of muscle cells. Mutations in dysferlin cause the progressive muscular dystrophies Miyoshi myopathy, limb girdle muscular dystrophy 2B, and distal anterior compartment myopathy. Dysferlinopathies are inherited in an autosomal recessive manner, and many patients with this disease harbor mis-sense mutations in at least one of their two pathogenic DYSF alleles. These patients have significantly reduced or absent dysferlin levels in skeletal muscle, suggesting that dysferlin encoded by mis-sense alleles is rapidly degraded by the cellular quality control system. We reasoned that mis-sense mutated dysferlin, if salvaged from degradation, might be biologically functional. We used a dysferlin-deficient human myoblast culture harboring the common R555W mis-sense allele and a DYSF-null allele, as well as control human myoblast cultures harboring either two wild-type or two null alleles. We measured dysferlin protein and mRNA levels, resealing kinetics of laser-induced plasmalemmal wounds, myotube formation, and cellular viability after treatment of the human myoblast cultures with the proteasome inhibitors lactacystin or bortezomib (Velcade). We show that endogenous R555W mis-sense mutated dysferlin is degraded by the proteasomal system. Inhibition of the proteasome by lactacystin or Velcade increases the levels of R555W mis-sense mutated dysferlin. This salvaged protein is functional as it restores plasma membrane resealing in patient-derived myoblasts and reverses their deficit in myotube formation. Bortezomib and lactacystin did not cause cellular toxicity at the regimen used. Our results raise the possibility that inhibition of the degradation pathway of mis-sense mutated dysferlin could be used as a therapeutic strategy for patients harboring certain dysferlin mis-sense mutations.


Asunto(s)
Acetilcisteína/análogos & derivados , Antineoplásicos/farmacología , Ácidos Borónicos/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Miopatías Distales/tratamiento farmacológico , Proteínas de la Membrana/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/tratamiento farmacológico , Distrofia Muscular de Cinturas/tratamiento farmacológico , Mutación Missense , Inhibidores de Proteasoma , Proteolisis/efectos de los fármacos , Pirazinas/farmacología , Acetilcisteína/farmacología , Alelos , Sustitución de Aminoácidos , Bortezomib , Células Cultivadas , Miopatías Distales/genética , Miopatías Distales/metabolismo , Miopatías Distales/patología , Disferlina , Humanos , Proteínas de la Membrana/genética , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/genética , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Distrofia Muscular de Cinturas/genética , Distrofia Muscular de Cinturas/metabolismo , Distrofia Muscular de Cinturas/patología , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
J Biol Chem ; 287(33): 27629-36, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22736764

RESUMEN

Dysferlin is a large transmembrane protein composed of a C-terminal transmembrane domain, two DysF domains, and seven C2 domains that mediate lipid- and protein-binding interactions. Recessive loss-of-function mutations in dysferlin lead to muscular dystrophies, for which no treatment is currently available. The large size of dysferlin precludes its encapsulation into an adeno-associated virus (AAV), the vector of choice for gene delivery to muscle. To design mini-dysferlin molecules suitable for AAV-mediated gene transfer, we tested internally truncated dysferlin constructs, each lacking one of the seven C2 domains, for their ability to localize to the plasma membrane and to repair laser-induced plasmalemmal wounds in dysferlin-deficient human myoblasts. We demonstrate that the dysferlin C2B, C2C, C2D, and C2E domains are dispensable for correct plasmalemmal localization. Furthermore, we show that the C2B, C2C, and C2E domains and, to a lesser extent, the C2D domain are dispensable for dysferlin membrane repair function. On the basis of these results, we designed small dysferlin molecules that can localize to the plasma membrane and reseal laser-induced plasmalemmal injuries and that are small enough to be incorporated into AAV. These results lay the groundwork for AAV-mediated gene therapy experiments in dysferlin-deficient mouse models.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Animales , Células COS , Membrana Celular/genética , Chlorocebus aethiops , Dependovirus , Disferlina , Terapia Genética/métodos , Humanos , Proteínas de la Membrana/genética , Ratones , Proteínas Musculares/genética , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Distrofias Musculares/terapia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/terapia , Estructura Terciaria de Proteína
5.
Biochemistry ; 48(11): 2377-84, 2009 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-19253956

RESUMEN

Dysferlin is a type II transmembrane protein implicated in Ca(2+)-dependent sarcolemmal membrane repair. Dysferlin has seven C2 domains, which are lipid and protein binding modules. In this study, we sought to characterize the lipid binding specificity of dysferlin's seven C2 domains. Dysferlin's C2A domain was able to bind to phosphatidylserine (PS), phosphatidylinositol 4-phosphate [PtdIns(4)P], and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] in a Ca(2+)-dependent fashion. The remainder of the C2 domains exhibited weaker and Ca(2+)-independent binding to PS and no significant binding to phosphoinositides.


Asunto(s)
Proteínas de la Membrana/química , Proteínas Musculares/química , Fosfatidilinositoles/química , Secuencia de Aminoácidos , Calcio/química , Calcio/metabolismo , Disferlina , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fosfatidilinositoles/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia
6.
Skelet Muscle ; 6: 38, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833743

RESUMEN

BACKGROUND: Skeletal muscle tissue has an enormous regenerative capacity that is instrumental for a successful defense against muscle injury and wasting. The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) exerts therapeutic effects in several muscle pathologies, but its role in damage-induced muscle regeneration is unclear. METHODS: Using muscle-specific gain- and loss-of-function models for PGC-1α in combination with the myotoxic agent cardiotoxin (CTX), we explored the role of this transcriptional coactivator in muscle damage and inflammation. RESULTS: Interestingly, we observed PGC-1α-dependent effects at the early stages of regeneration, in particular regarding macrophage accumulation and polarization from the pro-inflammatory M1 to the anti-inflammatory M2 type, a faster resolution of necrosis and protection against the development of fibrosis after multiple CTX-induced injuries. CONCLUSIONS: PGC-1α exerts beneficial effects on muscle inflammation that might contribute to the therapeutic effects of elevated muscle PGC-1α in different models of muscle wasting.


Asunto(s)
Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Miositis/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Regeneración , Animales , Proteínas Cardiotóxicas de Elápidos , Fibrosis/metabolismo , Fibrosis/fisiopatología , Expresión Génica , Hidroxiprolina/metabolismo , Macrófagos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Muscular , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Miositis/inducido químicamente , Miositis/patología , Necrosis , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética
7.
Sci Transl Med ; 6(250): 250ra112, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25143362

RESUMEN

No treatment is available for patients affected by the recessively inherited, progressive muscular dystrophies caused by a deficiency in the muscle membrane repair protein dysferlin. A marked reduction in dysferlin in patients harboring missense mutations in at least one of the two pathogenic DYSF alleles encoding dysferlin implies that dysferlin is degraded by the cell's quality control machinery. In vitro evidence suggests that missense mutated dysferlin might be functional if salvaged from degradation by the proteasome. We treated three patients with muscular dystrophy due to a homozygous Arg555Trp mutation in dysferlin with the proteasome inhibitor bortezomib and monitored dysferlin expression in monocytes and in skeletal muscle by repeated percutaneous muscle biopsy. Expression of missense mutated dysferlin in the skeletal muscle and monocytes of the three patients increased markedly, and dysferlin was correctly localized to the sarcolemma of muscle fibers on histological sections. Salvaged missense mutated dysferlin was functional in a membrane resealing assay in patient-derived muscle cells treated with three different proteasome inhibitors. We conclude that interference with the proteasomal system increases expression of missense mutated dysferlin, suggesting that this therapeutic strategy may benefit patients with dysferlinopathies and possibly other genetic diseases.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas Musculares/genética , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/genética , Mutación Missense/genética , Inhibidores de Proteasoma/uso terapéutico , Administración Intravenosa , Adulto , Alelos , Ácidos Borónicos/farmacología , Ácidos Borónicos/uso terapéutico , Bortezomib , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Disferlina , Humanos , Masculino , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Inhibidores de Proteasoma/farmacología , Pirazinas/farmacología , Pirazinas/uso terapéutico
8.
Cell Metab ; 17(5): 731-44, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23602450

RESUMEN

Autophagy is a catabolic process that ensures homeostatic cell clearance and is deregulated in a growing number of myopathological conditions. Although FoxO3 was shown to promote the expression of autophagy-related genes in skeletal muscle, the mechanisms triggering autophagy are unclear. We show that TSC1-deficient mice (TSCmKO), characterized by sustained activation of mTORC1, develop a late-onset myopathy related to impaired autophagy. In young TSCmKO mice, constitutive and starvation-induced autophagy is blocked at the induction steps via mTORC1-mediated inhibition of Ulk1, despite FoxO3 activation. Rapamycin is sufficient to restore autophagy in TSCmKO mice and improves the muscle phenotype of old mutant mice. Inversely, abrogation of mTORC1 signaling by depletion of raptor induces autophagy regardless of FoxO inhibition. Thus, mTORC1 is the dominant regulator of autophagy induction in skeletal muscle and ensures a tight coordination of metabolic pathways. These findings may open interesting avenues for therapeutic strategies directed toward autophagy-related muscle diseases.


Asunto(s)
Autofagia/fisiología , Complejos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Enfermedades Musculares/fisiopatología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/antagonistas & inhibidores , Factores de Transcripción Forkhead/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Enfermedades Musculares/metabolismo , Inanición/fisiopatología , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/metabolismo
9.
PLoS One ; 6(12): e28563, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174839

RESUMEN

Dysferlin is a multi-C2 domain transmembrane protein involved in a plethora of cellular functions, most notably in skeletal muscle membrane repair, but also in myogenesis, cellular adhesion and intercellular calcium signaling. We previously showed that dysferlin interacts with alpha-tubulin and microtubules in muscle cells. Microtubules are heavily reorganized during myogenesis to sustain growth and elongation of the nascent muscle fiber. Microtubule function is regulated by post-translational modifications, such as acetylation of its alpha-tubulin subunit, which is modulated by the histone deacetylase 6 (HDAC6) enzyme. In this study, we identified HDAC6 as a novel dysferlin-binding partner. Dysferlin prevents HDAC6 from deacetylating alpha-tubulin by physically binding to both the enzyme, via its C2D domain, and to the substrate, alpha-tubulin, via its C2A and C2B domains. We further show that dysferlin expression promotes alpha-tubulin acetylation, as well as increased microtubule resistance to, and recovery from, Nocodazole- and cold-induced depolymerization. By selectively inhibiting HDAC6 using Tubastatin A, we demonstrate that myotube formation was impaired when alpha-tubulin was hyperacetylated early in the myogenic process; however, myotube elongation occurred when alpha-tubulin was hyperacetylated in myotubes. This study suggests a novel role for dysferlin in myogenesis and identifies HDAC6 as a novel dysferlin-interacting protein.


Asunto(s)
Histona Desacetilasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo , Tubulina (Proteína)/metabolismo , Acetilación , Animales , Diferenciación Celular , Línea Celular , Disferlina , Histona Desacetilasa 6 , Humanos , Inmunoprecipitación , Proteínas de la Membrana/química , Ratones , Microtúbulos/metabolismo , Desarrollo de Músculos , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/enzimología , Proteínas Musculares/química , Polimerizacion , Unión Proteica , Estructura Terciaria de Proteína
10.
PLoS One ; 5(4): e10122, 2010 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-20405035

RESUMEN

Dysferlin is a type II transmembrane protein implicated in surface membrane repair in muscle. Mutations in dysferlin lead to limb girdle muscular dystrophy 2B, Miyoshi Myopathy and distal anterior compartment myopathy. Dysferlin's mode of action is not well understood and only a few protein binding partners have thus far been identified. Using affinity purification followed by liquid chromatography/mass spectrometry, we identified alpha-tubulin as a novel binding partner for dysferlin. The association between dysferlin and alpha-tubulin, as well as between dysferlin and microtubules, was confirmed in vitro by glutathione S-transferase pulldown and microtubule binding assays. These interactions were confirmed in vivo by co-immunoprecipitation. Confocal microscopy revealed that dysferlin and alpha-tubulin co-localized in the perinuclear region and in vesicular structures in myoblasts, and along thin longitudinal structures reminiscent of microtubules in myotubes. We mapped dysferlin's alpha-tubulin-binding region to its C2A and C2B domains. Modulation of calcium levels did not affect dysferlin binding to alpha-tubulin, suggesting that this interaction is calcium-independent. Our studies identified a new binding partner for dysferlin and suggest a role for microtubules in dysferlin trafficking to the sarcolemma.


Asunto(s)
Proteínas de la Membrana/metabolismo , Músculo Esquelético/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Sitios de Unión , Calcio/farmacología , Disferlina , Ratones , Microtúbulos/metabolismo , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/química , Mioblastos/metabolismo , Unión Proteica , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA