RESUMEN
Reversible infantile respiratory chain deficiency (RIRCD) is a rare mitochondrial myopathy leading to severe metabolic disturbances in infants, which recover spontaneously after 6-months of age. RIRCD is associated with the homoplasmic m.14674T>C mitochondrial DNA mutation; however, only ~ 1/100 carriers develop the disease. We studied 27 affected and 15 unaffected individuals from 19 families and found additional heterozygous mutations in nuclear genes interacting with mt-tRNAGlu including EARS2 and TRMU in the majority of affected individuals, but not in healthy carriers of m.14674T>C, supporting a digenic inheritance. Our transcriptomic and proteomic analysis of patient muscle suggests a stepwise mechanism where first, the integrated stress response associated with increased FGF21 and GDF15 expression enhances the metabolism modulated by serine biosynthesis, one carbon metabolism, TCA lipid oxidation and amino acid availability, while in the second step mTOR activation leads to increased mitochondrial biogenesis. Our data suggest that the spontaneous recovery in infants with digenic mutations may be modulated by the above described changes. Similar mechanisms may explain the variable penetrance and tissue specificity of other mtDNA mutations and highlight the potential role of amino acids in improving mitochondrial disease.
Asunto(s)
Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/metabolismo , Adolescente , Línea Celular , ADN Mitocondrial/genética , Femenino , Expresión Génica , Humanos , Lactante , Masculino , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Linaje , Proteómica , Músculo Cuádriceps/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismoRESUMEN
The Vma21p protein in yeast is an essential assembly chaperone for the vacuolar ATPase, the major proton pump of cellular membranes. In this issue, Ramachandran et al. (2009) report that mutations in the gene encoding the human homolog VMA21 cause the disease X-linked myopathy with excessive autophagy through an unexpected mechanism.
Asunto(s)
Enfermedades Musculares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Autofagia , Genes Ligados a X , Humanos , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas de Translocación de Protón Vacuolares/genéticaRESUMEN
OBJECTIVE: To harmonize terminology in mitochondrial medicine, we propose revised clinical criteria for primary mitochondrial syndromes. METHODS: The North American Mitochondrial Disease Consortium (NAMDC) established a Diagnostic Criteria Committee comprised of members with diverse expertise. It included clinicians, researchers, diagnostic laboratory directors, statisticians, and data managers. The Committee conducted a comprehensive literature review, an evaluation of current clinical practices and diagnostic modalities, surveys, and teleconferences to reach consensus on syndrome definitions for mitochondrial diseases. The criteria were refined after manual application to patients enrolled in the NAMDC Registry. RESULTS: By building upon published diagnostic criteria and integrating recent advances, NAMDC has generated updated consensus criteria for the clinical definition of classical mitochondrial syndromes. CONCLUSIONS: Mitochondrial diseases are clinically, biochemically, and genetically heterogeneous and therefore challenging to classify and diagnose. To harmonize terminology, we propose revised criteria for the clinical definition of mitochondrial disorders. These criteria are expected to standardize the diagnosis and categorization of mitochondrial diseases, which will facilitate future natural history studies and clinical trials.
Asunto(s)
Enfermedades Mitocondriales , Consenso , Humanos , Enfermedades Mitocondriales/diagnóstico , América del Norte , Sistema de Registros , SíndromeRESUMEN
Adult polyglucosan body disease (APBD) represents a complex autosomal recessive inherited neurometabolic disorder due to homozygous or compound heterozygous pathogenic variants in GBE1 gene, resulting in deficiency of glycogen-branching enzyme and secondary storage of glycogen in the form of polyglucosan bodies, involving the skeletal muscle, diaphragm, peripheral nerve (including autonomic fibers), brain white matter, spinal cord, nerve roots, cerebellum, brainstem and to a lesser extent heart, lung, kidney, and liver cells. The diversity of new clinical presentations regarding neuromuscular involvement is astonishing and transformed APBD in a key differential diagnosis of completely different clinical conditions, including axonal and demyelinating sensorimotor polyneuropathy, progressive spastic paraparesis, motor neuronopathy presentations, autonomic disturbances, leukodystrophies or even pure myopathic involvement with limb-girdle pattern of weakness. This review article aims to summarize the main clinical, biochemical, genetic, and diagnostic aspects regarding APBD with special focus on neuromuscular presentations.
Asunto(s)
Sistema de la Enzima Desramificadora del Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/fisiopatología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/fisiopatología , Adulto , Encéfalo/patología , Enfermedad del Almacenamiento de Glucógeno/patología , Humanos , Músculo Esquelético/patología , Enfermedades del Sistema Nervioso/patología , Nervios Periféricos/patología , Fenotipo , Médula Espinal/patologíaRESUMEN
Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals' samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp-/- mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp-/- MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia.
Asunto(s)
Cardiomiopatías/genética , Proteínas Portadoras/genética , Transporte de Electrón/fisiología , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Adulto , Edad de Inicio , Anciano , Alelos , Secuencia de Aminoácidos , Animales , Cardiomiopatías/complicaciones , Cardiomiopatías/patología , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Células Cultivadas , Preescolar , Estudios de Cohortes , ADN Mitocondrial , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Recién Nacido , Masculino , Ratones , Persona de Mediana Edad , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Linaje , Conformación Proteica , Homología de Secuencia , Índice de Severidad de la Enfermedad , Adulto JovenRESUMEN
Defects in nuclear-encoded proteins of the mitochondrial translation machinery cause early-onset and tissue-specific deficiency of one or more OXPHOS complexes. Here, we report a 7-year-old Italian boy with childhood-onset rapidly progressive encephalomyopathy and stroke-like episodes. Multiple OXPHOS defects and decreased mtDNA copy number (40%) were detected in muscle homogenate. Clinical features combined with low level of plasma citrulline were highly suggestive of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, however, the common m.3243 A > G mutation was excluded. Targeted exome sequencing of genes encoding the mitochondrial proteome identified a damaging mutation, c.567 G > A, affecting a highly conserved amino acid residue (p.Gly189Arg) of the MRM2 protein. MRM2 has never before been linked to a human disease and encodes an enzyme responsible for 2'-O-methyl modification at position U1369 in the human mitochondrial 16S rRNA. We generated a knockout yeast model for the orthologous gene that showed a defect in respiration and the reduction of the 2'-O-methyl modification at the equivalent position (U2791) in the yeast mitochondrial 21S rRNA. Complementation with the mrm2 allele carrying the equivalent yeast mutation failed to rescue the respiratory phenotype, which was instead completely rescued by expressing the wild-type allele. Our findings establish that defective MRM2 causes a MELAS-like phenotype, and suggests the genetic screening of the MRM2 gene in patients with a m.3243 A > G negative MELAS-like presentation.
Asunto(s)
Síndrome MELAS/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Niño , ADN Mitocondrial/genética , Humanos , Síndrome MELAS/diagnóstico , Masculino , Mitocondrias/genética , Encefalomiopatías Mitocondriales/genética , Encefalomiopatías Mitocondriales/metabolismo , Mutación , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Saccharomyces cerevisiae/genéticaRESUMEN
BACKGROUND: Thymine kinase 2 (TK2) is a mitochondrial matrix protein encoded in nuclear DNA and phosphorylates the pyrimidine nucleosides: thymidine and deoxycytidine. Autosomal recessive TK2 mutations cause a spectrum of disease from infantile onset to adult onset manifesting primarily as myopathy. OBJECTIVE: To perform a retrospective natural history study of a large cohort of patients with TK2 deficiency. METHODS: The study was conducted by 42 investigators across 31 academic medical centres. RESULTS: We identified 92 patients with genetically confirmed diagnoses of TK2 deficiency: 67 from literature review and 25 unreported cases. Based on clinical and molecular genetics findings, we recognised three phenotypes with divergent survival: (1) infantile-onset myopathy (42.4%) with severe mitochondrial DNA (mtDNA) depletion, frequent neurological involvement and rapid progression to early mortality (median post-onset survival (POS) 1.00, CI 0.58 to 2.33 years); (2) childhood-onset myopathy (40.2%) with mtDNA depletion, moderate-to-severe progression of generalised weakness and median POS at least 13 years; and (3) late-onset myopathy (17.4%) with mild limb weakness at onset and slow progression to respiratory insufficiency with median POS of 23 years. Ophthalmoparesis and facial weakness are frequent in adults. Muscle biopsies show multiple mtDNA deletions often with mtDNA depletion. CONCLUSIONS: In TK2 deficiency, age at onset, rate of weakness progression and POS are important variables that define three clinical subtypes. Nervous system involvement often complicates the clinical course of the infantile-onset form while extraocular muscle and facial involvement are characteristic of the late-onset form. Our observations provide essential information for planning future clinical trials in this disorder.
Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Proteínas Mitocondriales/deficiencia , Enfermedades Musculares/diagnóstico , Enfermedades Musculares/genética , Timidina Quinasa/deficiencia , Adolescente , Adulto , Edad de Inicio , Anciano , Niño , Preescolar , Femenino , Genes Recesivos , Pruebas Genéticas , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Enfermedades Musculares/mortalidad , Mutación , Fenotipo , Estudios Retrospectivos , Análisis de Supervivencia , Adulto JovenRESUMEN
The history of "mitochondrial pathologies", namely genetic pathologies affecting mitochondrial metabolism because of mutations in nuclear DNA-encoded genes for proteins active inside mitochondria or mutations in mitochondrial DNA-encoded genes, began in 1988. In that year, two different groups of researchers discovered, respectively, large-scale single deletions of mitochondrial DNA (mtDNA) in muscle biopsies from patients with "mitochondrial myopathies" and a point mutation in the mtDNA gene for subunit 4 of NADH dehydrogenase (MTND4), associated with maternally inherited Leber's hereditary optic neuropathy (LHON). Henceforth, a novel conceptual "mitochondrial genetics", separate from mendelian genetics, arose, based on three features of mtDNA: (1) polyplasmy; (2) maternal inheritance; and (3) mitotic segregation. Diagnosis of mtDNA-related diseases became possible through genetic analysis and experimental approaches involving histochemical staining of muscle or brain sections, single-fiber polymerase chain reaction (PCR) of mtDNA, and the creation of patient-derived "cybrid" (cytoplasmic hybrid) immortal fibroblast cell lines. The availability of the above-mentioned techniques along with the novel sensitivity of clinicians to such disorders led to the characterization of a constantly growing number of pathologies. Here is traced a brief historical perspective on the discovery of autonomous pathogenic mtDNA mutations and on the related mendelian pathology altering mtDNA integrity.
Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/patología , Enfermedades Mitocondriales/historia , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/metabolismo , Mutación , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genéticaRESUMEN
Mutations in the human mitochondrial genome are known to cause an array of diverse disorders, most of which are maternally inherited, and all of which are associated with defects in oxidative energy metabolism. It is now emerging that somatic mutations in mitochondrial DNA (mtDNA) are also linked to other complex traits, including neurodegenerative diseases, ageing and cancer. Here we discuss insights into the roles of mtDNA mutations in a wide variety of diseases, highlighting the interesting genetic characteristics of the mitochondrial genome and challenges in studying its contribution to pathogenesis.
Asunto(s)
ADN Mitocondrial/genética , Mutación , Envejecimiento/genética , Envejecimiento/metabolismo , ADN Mitocondrial/metabolismo , Transporte de Electrón , Genoma Mitocondrial , Mutación de Línea Germinal , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Modelos Biológicos , Modelos Genéticos , Neoplasias/genética , Neoplasias/metabolismo , Fosforilación OxidativaRESUMEN
Glycogen storage disease type IV (GSD IV) is a rare autosomal recessive disorder caused by deficiency of the glycogen-branching enzyme (GBE). The diagnostic hallmark of the disease is the accumulation of a poorly branched form of glycogen known as polyglucosan (PG). The disease is clinically heterogeneous, with variable tissue involvement and age at onset. Complete loss of enzyme activity is lethal in utero or in infancy and affects primarily the muscle and the liver. However, residual enzyme activity as low as 5-20% leads to juvenile or adult onset of a disorder that primarily affects the central and peripheral nervous system and muscles and in the latter is termed adult polyglucosan body disease (APBD). Here, we describe a mouse model of GSD IV that reflects this spectrum of disease. Homologous recombination was used to knock in the most common GBE1 mutation p.Y329S c.986A > C found in APBD patients of Ashkenazi Jewish decent. Mice homozygous for this allele (Gbe1(ys/ys)) exhibit a phenotype similar to APBD, with widespread accumulation of PG. Adult mice exhibit progressive neuromuscular dysfunction and die prematurely. While the onset of symptoms is limited to adult mice, PG accumulates in tissues of newborn mice but is initially absent from the cerebral cortex and heart muscle. Thus, PG is well tolerated in most tissues, but the eventual accumulation in neurons and their axons causes neuropathy that leads to hind limb spasticity and premature death. This mouse model mimics the pathology and pathophysiologic features of human adult-onset branching enzyme deficiency.
Asunto(s)
Modelos Animales de Enfermedad , Sistema de la Enzima Desramificadora del Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno Tipo IV/metabolismo , Mutación , Animales , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiopatología , Técnicas de Sustitución del Gen , Enfermedad del Almacenamiento de Glucógeno/genética , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno/fisiopatología , Enfermedad del Almacenamiento de Glucógeno Tipo IV/genética , Enfermedad del Almacenamiento de Glucógeno Tipo IV/fisiopatología , Ratones , Músculo Estriado/metabolismo , Músculo Estriado/fisiopatología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/fisiopatología , Sistema Nervioso Periférico/metabolismo , Sistema Nervioso Periférico/fisiopatología , FenotipoRESUMEN
Fukuyama muscular dystrophy (FCMD; MIM253800), one of the most common autosomal recessive disorders in Japan, was the first human disease found to result from ancestral insertion of a SINE-VNTR-Alu (SVA) retrotransposon into a causative gene. In FCMD, the SVA insertion occurs in the 3' untranslated region (UTR) of the fukutin gene. The pathogenic mechanism for FCMD is unknown, and no effective clinical treatments exist. Here we show that aberrant messenger RNA (mRNA) splicing, induced by SVA exon-trapping, underlies the molecular pathogenesis of FCMD. Quantitative mRNA analysis pinpointed a region that was missing from transcripts in patients with FCMD. This region spans part of the 3' end of the fukutin coding region, a proximal part of the 3' UTR and the SVA insertion. Correspondingly, fukutin mRNA transcripts in patients with FCMD and SVA knock-in model mice were shorter than the expected length. Sequence analysis revealed an abnormal splicing event, provoked by a strong acceptor site in SVA and a rare alternative donor site in fukutin exon 10. The resulting product truncates the fukutin carboxy (C) terminus and adds 129 amino acids encoded by the SVA. Introduction of antisense oligonucleotides (AONs) targeting the splice acceptor, the predicted exonic splicing enhancer and the intronic splicing enhancer prevented pathogenic exon-trapping by SVA in cells of patients with FCMD and model mice, rescuing normal fukutin mRNA expression and protein production. AON treatment also restored fukutin functions, including O-glycosylation of α-dystroglycan (α-DG) and laminin binding by α-DG. Moreover, we observe exon-trapping in other SVA insertions associated with disease (hypercholesterolemia, neutral lipid storage disease) and human-specific SVA insertion in a novel gene. Thus, although splicing into SVA is known, we have discovered in human disease a role for SVA-mediated exon-trapping and demonstrated the promise of splicing modulation therapy as the first radical clinical treatment for FCMD and other SVA-mediated diseases.
Asunto(s)
Empalme Alternativo/genética , Exones/genética , Retroelementos/genética , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/patología , Regiones no Traducidas 3'/genética , Empalme Alternativo/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Distroglicanos/metabolismo , Técnicas de Sustitución del Gen , Glicosilación , Humanos , Intrones/genética , Japón , Laminina/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Datos de Secuencia Molecular , Mutagénesis Insercional/efectos de los fármacos , Mutagénesis Insercional/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Isoformas de ARN/genética , Sitios de Empalme de ARN/genética , Síndrome de Walker-Warburg/terapiaRESUMEN
We used exome sequencing to identify mutations in sideroflexin 4 (SFXN4) in two children with mitochondrial disease (the more severe case also presented with macrocytic anemia). SFXN4 is an uncharacterized mitochondrial protein that localizes to the mitochondrial inner membrane. sfxn4 knockdown in zebrafish recapitulated the mitochondrial respiratory defect observed in both individuals and the macrocytic anemia with megaloblastic features of the more severe case. In vitro and in vivo complementation studies with fibroblasts from the affected individuals and zebrafish demonstrated the requirement of SFXN4 for mitochondrial respiratory homeostasis and erythropoiesis. Our findings establish mutations in SFXN4 as a cause of mitochondriopathy and macrocytic anemia.
Asunto(s)
Anemia Macrocítica/genética , Proteínas de la Membrana/genética , Enfermedades Mitocondriales/genética , Adolescente , Animales , Niño , Eritropoyesis/genética , Exoma , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Mitocondriales/genética , Mutación , Pez Cebra/genéticaRESUMEN
Defects in the tricarboxylic acid cycle (TCA) are associated with a spectrum of neurological phenotypes that are often difficult to diagnose and manage. Whole-exome sequencing (WES) led to a rapid expansion of diagnostic capabilities in such disorders and facilitated a better understanding of disease pathogenesis, although functional characterization remains a bottleneck to the interpretation of potential pathological variants. We report a 2-year-old boy of Afro-Caribbean ancestry, who presented with neuromuscular symptoms without significant abnormalities on routine diagnostic evaluation. WES revealed compound heterozygous missense variants of uncertain significance in mitochondrial aconitase (ACO2), which encodes the TCA enzyme ACO2. Pathogenic variants in ACO2 have been described in a handful of families as the cause of infantile cerebellar-retinal degeneration syndrome. Using biochemical and cellular assays in patient fibroblasts, we found that ACO2 expression was quantitatively normal, but ACO2 enzyme activity was <20% of that observed in control cells. We also observed a deficiency in cellular respiration and, for the first time, demonstrate evidence of mitochondrial DNA depletion and altered expression of some TCA components and electron transport chain subunits. The observed cellular defects were completely restored with ACO2 gene rescue. Our findings demonstrate the pathogenicity of two VUS in ACO2, provide novel mechanistic insights to TCA disturbances in ACO2 deficiency, and implicate mitochondrial DNA depletion in the pathogenesis of this recently described disorder.
Asunto(s)
Aconitato Hidratasa/deficiencia , Aconitato Hidratasa/genética , Errores Innatos del Metabolismo/genética , Mutación Missense , Enfermedades Neuromusculares/genética , Preescolar , Ciclo del Ácido Cítrico , ADN Mitocondrial/genética , Exoma , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Errores Innatos del Metabolismo/etnología , Errores Innatos del Metabolismo/metabolismo , Enfermedades Neuromusculares/etnología , Enfermedades Neuromusculares/metabolismoRESUMEN
STUDY QUESTION: Among women who carry pathogenic mitochondrial DNA (mtDNA) point mutations and healthy oocyte donors, what are the levels of support for developing oocyte mitochondrial replacement therapy (OMRT) to prevent transmission of mtDNA mutations? SUMMARY ANSWER: The majority of mtDNA carriers and oocyte donors support the development of OMRT techniques to prevent transmission of mtDNA diseases. WHAT IS KNOWN ALREADY: Point mutations of mtDNA cause a variety of maternally inherited human diseases that are frequently disabling and often fatal. Recent developments in (OMRT) as well as pronuclear transfer between embryos offer new potential options to prevent transmission of mtDNA disease. However, it is unclear whether the non-scientific community will approve of embryos that contain DNA from three people. STUDY DESIGN, SIZE, DURATION: Between 1 June 2012 through 12 February 2015, we administered surveys in cross-sectional studies of 92 female carriers of mtDNA point mutations and 112 healthy oocyte donors. PARTICIPANTS/MATERIALS, SETTING, METHODS: The OMRT carrier survey was completed by 92 female carriers of an mtDNA point mutation. Carriers were recruited through the North American Mitochondrial Disease Consortium (NAMDC), the United Mitochondrial Disease Foundation (UMDF), patient support groups, research and private patients followed at the Columbia University Medical Center (CUMC) and patients' referrals of maternal relatives. The OMRT donor survey was completed by 112 women who had donated oocytes through a major ITALIC! in vitro fertilization clinic. MAIN RESULTS AND THE ROLE OF CHANCE: All carriers surveyed were aware that they could transmit the mutation to their offspring, with 78% (35/45) of women, who were of childbearing age, indicating that the risk was sufficient to consider not having children, and 95% (87/92) of all carriers designating that the development of this technique was important and worthwhile. Of the 21 surveyed female carriers considering childbearing, 20 (95%) considered having their own biological offspring somewhat or very important and 16 of the 21 respondents (76%) were willing to donate oocytes for research and development. Of 112 healthy oocyte donors who completed the OMRT donor survey, 97 (87%) indicated that they would donate oocytes for generating a viable embryo through OMRT. LIMITATIONS, REASONS FOR CAUTION: Many of the participants were either patients or relatives of patients who were already enrolled in a research-oriented database, or who sought care in a tertiary research university setting, indicating a potential sampling bias. The survey was administered to a select group of individuals, who carry, or are at risk for carrying, mtDNA point mutations. These individuals are more likely to have been affected by the mutation or have witnessed first-hand the devastating effects of these mutations. It has not been established whether the general public would be supportive of this work. This survey did not explicitly address alternatives to OMRT. WIDER IMPLICATIONS OF THE FINDINGS: This is the first study indicating a high level of interest in the development of these methods among women affected by the diseases or who are at risk of carrying mtDNA mutations as well as willingness of most donors to provide oocytes for the development of OMRT. STUDY FUNDING/COMPETING INTERESTS: This work was conducted under the auspices of the NAMDC (Study Protocol 7404). NAMDC (U54NS078059) is part of the NCATS Rare Diseases Clinical Research Network (RDCRN). RDCRN is an initiative of the Office of Rare Diseases Research (ORDR) and NCATS. NAMDC is funded through a collaboration between NCATS, NINDS, NICHD and NIH Office of Dietary Supplements. The work was also supported by the Bernard and Anne Spitzer Fund and the New York Stem Cell Foundation (NYSCF). Dr Hirano has received research support from Santhera Pharmaceuticals and Edison Pharmaceuticals for studies unrelated to this work. None of the other authors have conflicts of interest. TRIAL REGISTRATION NUMBER: Not applicable.
Asunto(s)
Actitud , Heterocigoto , Enfermedades Mitocondriales/prevención & control , Terapia de Reemplazo Mitocondrial/psicología , Adulto , Estudios Transversales , ADN Mitocondrial/química , Femenino , Humanos , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/psicología , Mutación PuntualRESUMEN
Isolated methylmalonic acidemia (MMA), caused by deficiency of the mitochondrial enzyme methylmalonyl-CoA mutase (MUT), is often complicated by end stage renal disease that is resistant to conventional therapies, including liver transplantation. To establish a viable model of MMA renal disease, Mut was expressed in the liver of Mut(-/-) mice as a stable transgene under the control of an albumin (INS-Alb-Mut) promoter. Mut(-/-);Tg(INS-Alb-Mut) mice, although completely rescued from neonatal lethality that was displayed by Mut(-/-) mice, manifested a decreased glomerular filtration rate (GFR), chronic tubulointerstitial nephritis and ultrastructural changes in the proximal tubule mitochondria associated with aberrant tubular function, as demonstrated by single-nephron GFR studies. Microarray analysis of Mut(-/-);Tg(INS-Alb-Mut) kidneys identified numerous biomarkers, including lipocalin-2, which was then used to monitor the response of the GFR to antioxidant therapy in the mouse model. Renal biopsies and biomarker analysis from a large and diverse patient cohort (ClinicalTrials.gov identifier: NCT00078078) precisely replicated the findings in the animals, establishing Mut(-/-);Tg(INS-Alb-Mut) mice as a unique model of MMA renal disease. Our studies suggest proximal tubular mitochondrial dysfunction is a key pathogenic mechanism of MMA-associated kidney disease, identify lipocalin-2 as a biomarker of increased oxidative stress in the renal tubule, and demonstrate that antioxidants can attenuate the renal disease of MMA.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/tratamiento farmacológico , Errores Innatos del Metabolismo de los Aminoácidos/enzimología , Antioxidantes/farmacología , Modelos Animales de Enfermedad , Túbulos Renales Proximales/fisiopatología , Metilmalonil-CoA Mutasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/patología , Animales , Antioxidantes/uso terapéutico , Biomarcadores/metabolismo , Western Blotting , Cartilla de ADN/genética , Ensayo de Inmunoadsorción Enzimática , Fluoresceína-5-Isotiocianato , Genotipo , Tasa de Filtración Glomerular/genética , Humanos , Inmunohistoquímica , Metilmalonil-CoA Mutasa/genética , Metilmalonil-CoA Mutasa/metabolismo , Ratones , Ratones Noqueados , Análisis por Micromatrices , Microscopía Electrónica de Transmisión , Nefritis Intersticial/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transgenes/genética , Ubiquinona/farmacologíaRESUMEN
Defects of mitochondrial protein synthesis are clinically and genetically heterogeneous. We previously described a male infant who was born to consanguineous parents and who presented with severe congenital encephalopathy, peripheral neuropathy, myopathy, and lactic acidosis associated with deficiencies of multiple mitochondrial respiratory-chain enzymes and defective mitochondrial translation. In this work, we have characterized four additional affected family members, performed homozygosity mapping, and identified a homozygous splicing mutation in the splice donor site of exon 2 (c.504+1G>A) of RMND1 (required for meiotic nuclear division-1) in the affected individuals. Fibroblasts from affected individuals expressed two aberrant transcripts and had decreased wild-type mRNA and deficiencies of mitochondrial respiratory-chain enzymes. The RMND1 mutation caused haploinsufficiency that was rescued by overexpression of the wild-type transcript in mutant fibroblasts; this overexpression increased the levels and activities of mitochondrial respiratory-chain proteins. Knockdown of RMND1 via shRNA recapitulated the biochemical defect of the mutant fibroblasts, further supporting a loss-of-function pathomechanism in this disease. RMND1 belongs to the sif2 family, an evolutionary conserved group of proteins that share the DUF155 domain, have unknown function, and have never been associated with human disease. We documented that the protein localizes to mitochondria in mammalian and yeast cells. Further studies are necessary for understanding the function of this protein in mitochondrial protein translation.
Asunto(s)
Proteínas de Ciclo Celular/genética , Mitocondrias/genética , Encefalomiopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Biosíntesis de Proteínas , Consanguinidad , ADN Mitocondrial/genética , Exones , Fibroblastos/metabolismo , Predisposición Genética a la Enfermedad , Homocigoto , Humanos , Recién Nacido , Masculino , Encefalomiopatías Mitocondriales/metabolismo , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , ARN Mensajero/genéticaRESUMEN
PURPOSE: The purpose of this statement is to review the literature regarding mitochondrial disease and to provide recommendations for optimal diagnosis and treatment. This statement is intended for physicians who are engaged in diagnosing and treating these patients. METHODS: The Writing Group members were appointed by the Mitochondrial Medicine Society. The panel included members with expertise in several different areas. The panel members utilized a comprehensive review of the literature, surveys, and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve. RESULTS: Consensus-based recommendations are provided for the diagnosis and treatment of mitochondrial disease. CONCLUSION: The Delphi process enabled the formation of consensus-based recommendations. We hope that these recommendations will help standardize the evaluation, diagnosis, and care of patients with suspected or demonstrated mitochondrial disease.
Asunto(s)
Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/terapia , Consenso , Técnica Delphi , Medicina Basada en la Evidencia , Humanos , Resultado del TratamientoRESUMEN
We describe a slowly progressive myopathy in 7 unrelated adult patients with storage of polyglucosan in muscle fibers. Genetic investigation revealed homozygous or compound heterozygous deleterious variants in the glycogenin-1 gene (GYG1). Most patients showed depletion of glycogenin-1 in skeletal muscle, whereas 1 showed presence of glycogenin-1 lacking the C-terminal that normally binds glycogen synthase. Our results indicate that either depletion of glycogenin-1 or impaired interaction with glycogen synthase underlies this new form of glycogen storage disease that differs from a previously reported patient with GYG1 mutations who showed profound glycogen depletion in skeletal muscle and accumulation of glycogenin-1.
Asunto(s)
Glucosiltransferasas/deficiencia , Enfermedad del Almacenamiento de Glucógeno/diagnóstico , Enfermedad del Almacenamiento de Glucógeno/metabolismo , Glicoproteínas/deficiencia , Músculo Esquelético/metabolismo , Adulto , Anciano , Femenino , Glucosiltransferasas/genética , Enfermedad del Almacenamiento de Glucógeno/genética , Glucógeno Sintasa/metabolismo , Glicoproteínas/genética , Humanos , Masculino , Persona de Mediana EdadRESUMEN
INTRODUCTION: The PNPLA2 gene encodes the enzyme adipose triglyceride lipase (ATGL), which catalyzes the first step of triglyceride hydrolysis. Mutations in this gene are associated with an autosomal recessive lipid-storage myopathy, neutral lipid-storage disease with myopathy (NLSD-M). RESULTS: A 72-year-old woman had late-onset myopathy, with mild weakness, cramps, and exercise intolerance. Electromyography showed myotonic discharges. A few leukocytes showed lipid droplets (Jordan anomaly). Deltoid and quadriceps muscle biopsies showed no lipid storage. Genetic analysis of PNPLA2 detected 2 heterozygous mutations: c.497A>G (p.Asp166Gly) in exon 5 and c.1442C>T (p.Pro481Leu) in exon 10. Expression of mutant PNPLA2 plasmids in HeLa cells resulted in impaired enzyme activity, confirming the pathological effects of the mutations. CONCLUSIONS: In this case of NLSD-M, the myopathy may be due to a metabolic defect rather than to a mechanical effect of lipid storage. This suggests that more than 1 mechanism contributes to muscle damage in NLSD-M.
Asunto(s)
Lipasa/genética , Errores Innatos del Metabolismo Lipídico/genética , Músculo Esquelético/patología , Enfermedades Musculares/genética , Distrofias Musculares/genética , Mutación/genética , Anciano , Biopsia , Femenino , Heterocigoto , Humanos , Errores Innatos del Metabolismo Lipídico/diagnóstico , Enfermedades Musculares/diagnóstico , Distrofias Musculares/diagnósticoRESUMEN
One large group of hereditary myopathies characterized by recurrent myoglobinuria, almost invariably triggered by exercise, comprises metabolic disorders of two main fuels, glycogen and long-chain fatty acids, or mitochondrial diseases of the respiratory chain. Differential diagnosis is required to distinguish the three conditions, although all cause a crisis of muscle energy. Muscle biopsy may be useful when performed well after the episode of rhabdomyolysis. Molecular genetics is increasingly the diagnostic test of choice to discover the underlying genetic basis.