Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Physiol ; 170(1): 43-56, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26553649

RESUMEN

Based on enzyme activity assays and metabolic responses to waterlogging of the legume Lotus japonicus, it was previously suggested that, during hypoxia, the tricarboxylic acid cycle switches to a noncyclic operation mode. Hypotheses were postulated to explain the alternative metabolic pathways involved, but as yet, a direct analysis of the relative redistribution of label through the corresponding pathways was not made. Here, we describe the use of stable isotope-labeling experiments for studying metabolism under hypoxia using wild-type roots of the crop legume soybean (Glycine max). [(13)C]Pyruvate labeling was performed to compare metabolism through the tricarboxylic acid cycle, fermentation, alanine metabolism, and the γ-aminobutyric acid shunt, while [(13)C]glutamate and [(15)N]ammonium labeling were performed to address the metabolism via glutamate to succinate. Following these labelings, the time course for the redistribution of the (13)C/(15)N label throughout the metabolic network was evaluated with gas chromatography-time of flight-mass spectrometry. Our combined labeling data suggest the inhibition of the tricarboxylic acid cycle enzyme succinate dehydrogenase, also known as complex II of the mitochondrial electron transport chain, providing support for the bifurcation of the cycle and the down-regulation of the rate of respiration measured during hypoxic stress. Moreover, up-regulation of the γ-aminobutyric acid shunt and alanine metabolism explained the accumulation of succinate and alanine during hypoxia.


Asunto(s)
Isótopos de Carbono/metabolismo , Glycine max/metabolismo , Isótopos de Nitrógeno/metabolismo , Oxígeno/metabolismo , Respiración de la Célula , Ciclo del Ácido Cítrico , Cromatografía de Gases y Espectrometría de Masas , Marcaje Isotópico/métodos , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo , Glycine max/fisiología , Succinato Deshidrogenasa/metabolismo , Ácido gamma-Aminobutírico/metabolismo
2.
Planta ; 239(3): 531-41, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24370634

RESUMEN

More frequent flooding and waterlogging events due to more heavy precipitation are expected worldwide in the context of climate change. Accordingly, adaptation of plants to oxygen limitation at both cellular and whole plant levels should be investigated thoroughly, that derived knowledge could be taken into account in breeding programs and agronomical practices for saving plant fitness, growth and development even when oxygen availability is low. In the present review, we highlight current knowledge on essential aspects of low oxygen stress-induced changes in nitrogen metabolism. The involvement of two possible pathways for NO production either via the reaction catalyzed by nitrate reductase or at Complex III or IV of the mitochondrial electron transport chain, thus contributing to ATP synthesis via the so-called nitrite-NO respiration, is discussed. NO is proposed to be scavenged by non-symbiotic hemoglobin (Hb) in a Hb/NO cycle, in which NAD(P)H is oxidized for the conversion of NO into NO3(-). The investigation of an additional adaptation to the decrease in oxygen availability via transcriptional and posttranslational regulation of amino acid synthesis pathways, using publicly available transcriptome and translatome data for Arabidopsis thaliana and rice is also discussed.


Asunto(s)
Nitrógeno/metabolismo , Oxígeno/fisiología , Plantas/metabolismo , Aminoácidos/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Estrés Fisiológico
3.
Plants (Basel) ; 9(10)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076529

RESUMEN

Root oxygen deficiency that is induced by flooding (waterlogging) is a common situation in many agricultural areas, causing considerable loss in yield and productivity. Physiological and metabolic acclimation to hypoxia has mostly been studied on roots or whole seedlings under full submergence. The metabolic difference between shoots and roots during waterlogging, and how roots and shoots communicate in such a situation is much less known. In particular, the metabolic acclimation in shoots and how this, in turn, impacts on roots metabolism is not well documented. Here, we monitored changes in the metabolome of roots and shoots of barrel clover (Medicago truncatula), growth, and gas-exchange, and analyzed phloem sap exudate composition. Roots exhibited a typical response to hypoxia, such as γ-aminobutyrate and alanine accumulation, as well as a strong decline in raffinose, sucrose, hexoses, and pentoses. Leaves exhibited a strong increase in starch, sugars, sugar derivatives, and phenolics (tyrosine, tryptophan, phenylalanine, benzoate, ferulate), suggesting an inhibition of sugar export and their alternative utilization by aromatic compounds production via pentose phosphates and phosphoenolpyruvate. Accordingly, there was an enrichment in sugars and a decline in organic acids in phloem sap exudates under waterlogging. Mass-balance calculations further suggest an increased imbalance between loading by shoots and unloading by roots under waterlogging. Taken as a whole, our results are consistent with the inhibition of sugar import by waterlogged roots, leading to an increase in phloem sugar pool, which, in turn, exert negative feedback on sugar metabolism and utilization in shoots.

4.
Plants (Basel) ; 5(2)2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27258319

RESUMEN

In the context of climatic change, more heavy precipitation and more frequent flooding and waterlogging events threaten the productivity of arable farmland. Furthermore, crops were not selected to cope with flooding- and waterlogging-induced oxygen limitation. In general, low oxygen stress, unlike other abiotic stresses (e.g., cold, high temperature, drought and saline stress), received little interest from the scientific community and less financial support from stakeholders. Accordingly, breeding programs should be developed and agronomical practices should be adapted in order to save plants' growth and yield-even under conditions of low oxygen availability (e.g., submergence and waterlogging). The prerequisite to the success of such breeding programs and changes in agronomical practices is a good knowledge of how plants adapt to low oxygen stress at the cellular and the whole plant level. In the present paper, we summarized the recent knowledge on metabolic adjustment in general under low oxygen stress and highlighted thereafter the major changes pertaining to the reconfiguration of amino acids syntheses. We propose a model showing (i) how pyruvate derived from active glycolysis upon hypoxia is competitively used by the alanine aminotransferase/glutamate synthase cycle, leading to alanine accumulation and NAD⁺ regeneration. Carbon is then saved in a nitrogen store instead of being lost through ethanol fermentative pathway. (ii) During the post-hypoxia recovery period, the alanine aminotransferase/glutamate dehydrogenase cycle mobilizes this carbon from alanine store. Pyruvate produced by the reverse reaction of alanine aminotransferase is funneled to the TCA cycle, while deaminating glutamate dehydrogenase regenerates, reducing equivalent (NADH) and 2-oxoglutarate to maintain the cycle function.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA