Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cancers (Basel) ; 13(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34503243

RESUMEN

PURPOSE: To evaluate the suitability of psoas and erector spinae muscle proton density fat fraction (PDFF) and fat volume as biomarkers for monitoring cachexia severity in an oncological cohort, and to evaluate regional variances in muscle parameters over time. METHODS: In this prospective study, 58 oncological patients were examined by a 3 T MRI receiving between one and five scans. Muscle volume and PDFF were measured, segmentation masks were divided into proximal, middle and distal muscle section. RESULTS: A regional variation of fat distribution in erector spinae muscle at baseline was found (p < 0.01). During follow-ups significant relative change of muscle parameters was observed. Relative maximum change of erector spinae muscle showed a significant regional variation. Correlation testing with age as a covariate revealed significant correlations for baseline psoas fat volume (r = -0.55, p < 0.01) and baseline psoas PDFF (r = -0.52, p = 0.02) with maximum BMI change during the course of the disease. CONCLUSION: In erector spinae muscles, a regional variation of fat distribution at baseline and relative maximum change of muscle parameters was observed. Our results indicate that psoas muscle PDFF and fat volume could serve as MRI-determined biomarkers for early risk stratification and disease monitoring regarding progression and severity of weight loss in cancer cachexia.

2.
Cell Metab ; 33(8): 1685-1700.e9, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34237252

RESUMEN

Liver fibrosis is a strong predictor of long-term mortality in individuals with metabolic-associated fatty liver disease; yet, the mechanisms underlying the progression from the comparatively benign fatty liver state to advanced non-alcoholic steatohepatitis (NASH) and liver fibrosis are incompletely understood. Using cell-type-resolved genomics, we show that comprehensive alterations in hepatocyte genomic and transcriptional settings during NASH progression, led to a loss of hepatocyte identity. The hepatocyte reprogramming was under tight cooperative control of a network of fibrosis-activated transcription factors, as exemplified by the transcription factor Elf-3 (ELF3) and zinc finger protein GLIS2 (GLIS2). Indeed, ELF3- and GLIS2-controlled fibrosis-dependent hepatokine genes targeting disease-associated hepatic stellate cell gene programs. Thus, interconnected transcription factor networks not only promoted hepatocyte dysfunction but also directed the intra-hepatic crosstalk necessary for NASH and fibrosis progression, implying that molecular "hub-centered" targeting strategies are superior to existing mono-target approaches as currently used in NASH therapy.


Asunto(s)
Redes Reguladoras de Genes , Enfermedad del Hígado Graso no Alcohólico , Comunicación , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo
3.
Mol Metab ; 28: 91-106, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31331823

RESUMEN

OBJECTIVE: Although it is well established that a-calcitonin gene-related peptide (CGRP) stabilizes muscle-type cholinergic receptors nicotinic subunits (AChR), the underlying mechanism by which this neuropeptide regulates muscle protein metabolism and neuromuscular junction (NMJ) morphology is unclear. METHODS: To elucidate the mechanisms how CGRP controls NMJ stability in denervated mice skeletal muscles, we carried out physiological, pharmacological, and molecular analyses of atrophic muscles induced by sciatic nerve transection. RESULTS: Here, we report that CGRP treatment in vivo abrogated the deleterious effects on NMJ upon denervation (DEN), an effect that was associated with suppression of skeletal muscle proteolysis, but not stimulation of protein synthesis. CGRP also blocked the DEN-induced increase in endocytic AChR vesicles and the elevation of autophagosomes per NMJ area. The treatment of denervated animals with rapamycin blocked the stimulatory effects of CGRP on mTORC1 and its inhibitory actions on autophagic flux and NMJ degeneration. Furthermore, CGRP inhibited the DEN-induced hyperactivation of Ca2+-dependent proteolysis, a degradative system that has been shown to destabilize NMJ. Consistently, calpain was found to be activated by cholinergic stimulation in myotubes leading to the dispersal of AChR clusters, an effect that was abolished by CGRP. CONCLUSION: Taken together, these data suggest that the inhibitory effect of CGRP on autophagy and calpain may represent an important mechanism for the preservation of synapse morphology when degradative machinery is exacerbated upon denervation conditions.


Asunto(s)
Autofagia/efectos de los fármacos , Péptido Relacionado con Gen de Calcitonina/farmacología , Calpaína/antagonistas & inhibidores , Músculo Esquelético/efectos de los fármacos , Unión Neuromuscular/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Calpaína/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo
4.
Sci Signal ; 9(419): rs1, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26980443

RESUMEN

Mapping the in vivo distribution of endogenous oxidants in animal tissues is of substantial biomedical interest. Numerous health-related factors, including diet, physical activity, infection, aging, toxins, or pharmacological intervention, may cause redox changes. Tools are needed to pinpoint redox state changes to particular organs, tissues, cell types, and subcellular organelles. We describe a procedure that preserves the in vivo redox state of genetically encoded redox biosensors within histological tissue sections, thus providing "redox maps" for any tissue and comparison of interest. We demonstrate the utility of the technique by visualizing endogenous redox differences and changes in the context of tumor growth, inflammation, embryonic development, and nutrient starvation.


Asunto(s)
Imagen Molecular/métodos , Sondas Moleculares/metabolismo , Transgenes , Animales , Células HEK293 , Humanos , Ratones , Ratones Desnudos , Sondas Moleculares/genética , Oxidación-Reducción
5.
Nat Commun ; 7: 11869, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27323669

RESUMEN

Receptor-interacting protein kinase 3 (RIPK3) mediates necroptosis, a form of programmed cell death that promotes inflammation in various pathological conditions, suggesting that it might be a privileged pharmacological target. However, its function in glucose homeostasis and obesity has been unknown. Here we show that RIPK3 is over expressed in the white adipose tissue (WAT) of obese mice fed with a choline-deficient high-fat diet. Genetic inactivation of Ripk3 promotes increased Caspase-8-dependent adipocyte apoptosis and WAT inflammation, associated with impaired insulin signalling in WAT as the basis for glucose intolerance. Similarly to mice, in visceral WAT of obese humans, RIPK3 is overexpressed and correlates with the body mass index and metabolic serum markers. Together, these findings provide evidence that RIPK3 in WAT maintains tissue homeostasis and suppresses inflammation and adipocyte apoptosis, suggesting that systemic targeting of necroptosis might be associated with the risk of promoting insulin resistance in obese patients.


Asunto(s)
Tejido Adiposo Blanco/enzimología , Deficiencia de Colina/genética , Intolerancia a la Glucosa/genética , Grasa Intraabdominal/enzimología , Necrosis/enzimología , Obesidad/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Adipocitos/enzimología , Adipocitos/patología , Tejido Adiposo Blanco/patología , Animales , Apoptosis/genética , Índice de Masa Corporal , Caspasa 8/genética , Caspasa 8/metabolismo , Colina/metabolismo , Deficiencia de Colina/enzimología , Deficiencia de Colina/etiología , Deficiencia de Colina/patología , Dieta Alta en Grasa , Regulación de la Expresión Génica , Intolerancia a la Glucosa/enzimología , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/patología , Homeostasis , Humanos , Inflamación , Insulina/metabolismo , Resistencia a la Insulina , Grasa Intraabdominal/patología , Masculino , Ratones , Necrosis/genética , Necrosis/patología , Obesidad/enzimología , Obesidad/etiología , Obesidad/patología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
6.
Metabolism ; 63(10): 1238-49, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25107565

RESUMEN

The identification of active brown fat in humans has evoked widespread interest in the biology of non-shivering thermogenesis among basic and clinical researchers. As a consequence we have experienced a plethora of contributions related to cellular and molecular processes in thermogenic adipocytes as well as their function in the organismal context and their relevance to human physiology. In this review we focus on the cellular basis of non-shivering thermogenesis, particularly in relation to human health and metabolic disease. We provide an overview of the cellular function and distribution of thermogenic adipocytes in mouse and humans, and how this can be affected by environmental factors, such as prolonged cold exposure. We elaborate on recent evidence and open questions on the distinction of classical brown versus beige/brite adipocytes. Further, the origin of thermogenic adipocytes as well as current models for the recruitment of beige/brite adipocytes is discussed with an emphasis on the role of progenitor cells. Focusing on humans, we describe the expanding evidence for the activity, function and physiological relevance of thermogenic adipocytes. Finally, as the potential of thermogenic adipocyte activation as a therapeutic approach for the treatment of obesity and associated metabolic diseases becomes evident, we highlight goals and challenges for current research on the road to clinical translation.


Asunto(s)
Adipocitos/fisiología , Termogénesis/fisiología , Tejido Adiposo Pardo/fisiología , Animales , Ambiente , Humanos , Obesidad/fisiopatología
7.
EMBO Mol Med ; 5(2): 294-308, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23307490

RESUMEN

In mammals, proper storage and distribution of lipids in and between tissues is essential for the maintenance of energy homeostasis. Here, we show that tumour growth triggers hepatic metabolic dysfunction as part of the cancer cachectic phenotype, particularly by reduced hepatic very-low-density-lipoprotein (VLDL) secretion and hypobetalipoproteinemia. As a molecular cachexia output pathway, hepatic levels of the transcription factor transforming growth factor beta 1-stimulated clone (TSC) 22 D4 were increased in cancer cachexia. Mimicking high cachectic levels of TSC22D4 in healthy livers led to the inhibition of hepatic VLDL release and lipogenic genes, and diminished systemic VLDL levels under both normal and high fat dietary conditions. Liver-specific ablation of TSC22D4 triggered hypertriglyceridemia through the induction of hepatic VLDL secretion. Furthermore, hepatic TSC22D4 expression levels were correlated with the degree of body weight loss and VLDL hypo-secretion in cancer cachexia, and TSC22D4 deficiency rescued tumour cell-induced metabolic dysfunction in hepatocytes. Therefore, hepatic TSC22D4 activity may represent a molecular rationale for peripheral energy deprivation in subjects with metabolic wasting diseases, including cancer cachexia.


Asunto(s)
Caquexia/metabolismo , Hígado/metabolismo , Neoplasias/complicaciones , Factores de Transcripción/metabolismo , Animales , Caquexia/etiología , Humanos , Lipoproteínas VLDL/metabolismo , Hepatopatías/etiología , Hepatopatías/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias/metabolismo , Factores de Transcripción/genética , Triglicéridos/metabolismo
8.
Cell Metab ; 13(4): 389-400, 2011 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-21459324

RESUMEN

The aberrant accumulation of lipids in the liver ("fatty liver") is tightly associated with several components of the metabolic syndrome, including type 2 diabetes, coronary heart disease, and atherosclerosis. Here we show that the impaired hepatic expression of transcriptional cofactor transducin beta-like (TBL) 1 represents a common feature of mono- and multigenic fatty liver mouse models. Indeed, the liver-specific ablation of TBL1 gene expression in healthy mice promoted hypertriglyceridemia and hepatic steatosis under both normal and high-fat dietary conditions. TBL1 deficiency resulted in inhibition of fatty acid oxidation due to impaired functional cooperation with its heterodimerization partner TBL-related (TBLR) 1 and the nuclear receptor peroxisome proliferator-activated receptor (PPAR) α. As TBL1 expression levels were found to also inversely correlate with liver fat content in human patients, the lack of hepatic TBL1/TBLR1 cofactor activity may represent a molecular rationale for hepatic steatosis in subjects with obesity and the metabolic syndrome.


Asunto(s)
Hígado Graso/etiología , Hipertrigliceridemia/etiología , Hígado/metabolismo , Transducina/metabolismo , Animales , Grasas de la Dieta/farmacología , Dimerización , Modelos Animales de Enfermedad , Humanos , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Proteínas Nucleares/metabolismo , PPAR alfa/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/metabolismo , Transducina/antagonistas & inhibidores , Transducina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA