Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Appl Biomech ; 40(2): 155-165, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38016463

RESUMEN

Biomechanics as a discipline is ideally placed to increase awareness and participation of girls and women in science, technology, engineering, and mathematics. A nationwide Biomechanics and Research Innovation Challenge (BRInC) centered on mentoring and role modeling was developed to engage high school girls (mentees) and early-mid-career women (mentors) in the field of biomechanics through the completion of a 100-day research and/or innovation project. This manuscript describes the development, implementation, and uptake of the inaugural BRInC program and synthesizes the research and innovation projects undertaken, providing a framework for adoption of this program within the global biomechanics community. Eighty-seven high school girls in years 9 and 10 (age range: 14-16 y) were mentored in teams (n = 17) by women in biomechanics (n = 24). Using a design thinking approach, teams generated solutions to biomechanics-based problem(s)/research question(s). Eight key reflections on program strengths, as well as areas for improvement and planned changes for future iterations of the BRInC program, are outlined. These key reflections highlight the innovation, impact, and scalability of the program; the importance of a program framework and effective communication tools; and implementation of strategies to sustain the program as well as the importance of diversity and building a sense of community.


Asunto(s)
Tutoría , Humanos , Femenino , Adolescente , Fenómenos Biomecánicos , Mentores
2.
J Exp Biol ; 226(7)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37021681

RESUMEN

Among terrestrial mammals, the largest, the 3 tonne African elephant, is one-million times heavier than the smallest, the 3 g pygmy shrew. Body mass is the most obvious and arguably the most fundamental characteristic of an animal, impacting many important attributes of its life history and biology. Although evolution may guide animals to different sizes, shapes, energetic profiles or ecological niches, it is the laws of physics that limit biological processes and, in turn, affect how animals interact with their environment. Consideration of scaling helps us to understand why elephants are not merely scaled-up shrews, but rather have modified body proportions, posture and locomotor style to mitigate the consequences of their large size. Scaling offers a quantitative lens into how biological features vary compared with predictions based on physical laws. In this Review, we provide an introduction to scaling and its historical context, focusing on two fields that are strongly represented in experimental biology: physiology and biomechanics. We show how scaling has been used to explore metabolic energy use with changes in body size. We discuss the musculoskeletal and biomechanical adaptations that animals use to mitigate the consequences of size, and provide insights into the scaling of mechanical and energetic demands of animal locomotion. For each field, we discuss empirical measurements, fundamental scaling theories and the importance of considering phylogenetic relationships when performing scaling analyses. Finally, we provide forward-looking perspectives focused on improving our understanding of the diversity of form and function in relation to size.


Asunto(s)
Locomoción , Mamíferos , Animales , Fenómenos Biomecánicos , Filogenia , Locomoción/fisiología , Tamaño Corporal , Mamíferos/fisiología
3.
J Anat ; 240(1): 131-144, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34411299

RESUMEN

Assessment of regional muscle architecture is primarily done through the study of animals, human cadavers, or using b-mode ultrasound imaging. However, there remain several limitations to how well such measurements represent in vivo human whole muscle architecture. In this study, we developed an approach using diffusion tensor imaging and magnetic resonance imaging to quantify muscle fibre lengths in different muscle regions along a muscle's length and width. We first tested the between-day reliability of regional measurements of fibre lengths in the medial (MG) and lateral gastrocnemius (LG) and found good reliability for these measurements (intraclass correlation coefficient [ICC] = 0.79 and ICC = 0.84, respectively). We then applied this approach to a group of 32 participants including males (n = 18), females (n = 14), young (24 ± 4 years) and older (70 ± 2 years) adults. We assessed the differences in regional muscle fibre lengths between different muscle regions and between individuals. Additionally, we compared regional muscle fibre lengths between sexes, age groups, and muscles. We found substantial variability in fibre lengths between different regions within the same muscle and between the MG and the LG across individuals. At the group level, we found no difference in mean muscle fibre length between males and females, nor between young and older adults, or between the MG and the LG. The high variability in muscle fibre lengths between different regions within the same muscle, possibly expands the functional versatility of the muscle for different task requirements. The high variability between individuals supports the use of subject-specific measurements of muscle fibre lengths when evaluating muscle function.


Asunto(s)
Imagen de Difusión Tensora , Músculo Esquelético , Animales , Imagen de Difusión Tensora/métodos , Femenino , Imagen por Resonancia Magnética , Masculino , Fibras Musculares Esqueléticas , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Reproducibilidad de los Resultados
4.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35258618

RESUMEN

A considerable biomechanical challenge faces larger terrestrial animals as the demands of body support scale with body mass (Mb), while muscle force capacity is proportional to muscle cross-sectional area, which scales with Mb2/3. How muscles adjust to this challenge might be best understood by examining varanids, which vary by five orders of magnitude in size without substantial changes in posture or body proportions. Muscle mass, fascicle length and physiological cross-sectional area all scale with positive allometry, but it remains unclear, however, how muscles become larger in this clade. Do larger varanids have more muscle fibres, or does individual fibre cross-sectional area (fCSA) increase? It is also unknown if larger animals compensate by increasing the proportion of fast-twitch (higher glycogen concentration) fibres, which can produce higher force per unit area than slow-twitch fibres. We investigated muscle fibre area and glycogen concentration in hindlimb muscles from varanids ranging from 105 g to 40,000 g. We found that fCSA increased with modest positive scaling against body mass (Mb0.197) among all our samples, and ∝Mb0.278 among a subset of our data consisting of never-frozen samples only. The proportion of low-glycogen fibres decreased significantly in some muscles but not others. We compared our results with the scaling of fCSA in different groups. Considering species means, fCSA scaled more steeply in invertebrates (∝Mb0.575), fish (∝Mb0.347) and other reptiles (∝Mb0.308) compared with varanids (∝Mb0.267), which had a slightly higher scaling exponent than birds (∝Mb0.134) and mammals (∝Mb0.122). This suggests that, while fCSA generally increases with body size, the extent of this scaling is taxon specific, and may relate to broad differences in locomotor function, metabolism and habitat between different clades.


Asunto(s)
Glucógeno , Lagartos , Animales , Tamaño Corporal , Miembro Posterior , Mamíferos , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiología
5.
Proc Biol Sci ; 288(1947): 20210201, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33726594

RESUMEN

In our everyday lives, we negotiate complex and unpredictable environments. Yet, much of our knowledge regarding locomotion has come from studies conducted under steady-state conditions. We have previously shown that humans rely on the ankle joint to absorb energy and recover from perturbations; however, the muscle-tendon unit (MTU) behaviour and motor control strategies that accompany these joint-level responses are not yet understood. In this study, we determined how neuromuscular control and plantar flexor MTU dynamics are modulated to maintain stability during unexpected vertical perturbations. Participants performed steady-state hopping and, at an unknown time, we elicited an unexpected perturbation via rapid removal of a platform. In addition to kinematics and kinetics, we measured gastrocnemius and soleus muscle activations using electromyography and in vivo fascicle dynamics using B-mode ultrasound. Here, we show that an unexpected drop in ground height introduces an automatic phase shift in the timing of plantar flexor muscle activity relative to MTU length changes. This altered timing initiates a cascade of responses including increased MTU and fascicle length changes and increased muscle forces which, when taken together, enables the plantar flexors to effectively dissipate energy. Our results also show another mechanism, whereby increased co-activation of the plantar- and dorsiflexors enables shortening of the plantar flexor fascicles prior to ground contact. This co-activation improves the capacity of the plantar flexors to rapidly absorb energy upon ground contact, and may also aid in the avoidance of potentially damaging muscle strains. Our study provides novel insight into how humans alter their neural control to modulate in vivo muscle-tendon interaction dynamics in response to unexpected perturbations. These data provide essential insight to help guide design of lower-limb assistive devices that can perform within varied and unpredictable environments.


Asunto(s)
Músculo Esquelético , Tendones , Articulación del Tobillo , Fenómenos Biomecánicos , Elasticidad , Electromiografía , Humanos , Contracción Muscular
6.
J Exp Biol ; 224(12)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34096594

RESUMEN

The functional difference between the medial gastrocnemius (MG) and lateral gastrocnemius (LG) during walking in humans has not yet been fully established. Although evidence highlights that the MG is activated more than the LG, the link with potential differences in mechanical behavior between these muscles remains unknown. In this study, we aimed to determine whether differences in activation between the MG and LG translate into different fascicle behavior during walking. Fifteen participants walked at their preferred speed under two conditions: 0% and 10% incline treadmill grade. We used surface electromyography and B-mode ultrasound to estimate muscle activation and fascicle dynamics in the MG and LG. We observed a higher normalized activation in the MG than in the LG during stance, which did not translate into greater MG normalized fascicle shortening. However, we observed significantly less normalized fascicle lengthening in the MG than in the LG during early stance, which matched with the timing of differences in activation between muscles. This resulted in more isometric behavior of the MG, which likely influences the muscle-tendon interaction and enhances the catapult-like mechanism in the MG compared with the LG. Nevertheless, this interplay between muscle activation and fascicle behavior, evident at the group level, was not observed at the individual level, as revealed by the lack of correlation between the MG-LG differences in activation and MG-LG differences in fascicle behavior. The MG and LG are often considered as equivalent muscles but the neuromechanical differences between them suggest that they may have distinct functional roles during locomotion.


Asunto(s)
Músculo Esquelético , Caminata , Fenómenos Biomecánicos , Electromiografía , Humanos , Contracción Muscular , Tendones
7.
J Exp Biol ; 224(Pt 3)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33376144

RESUMEN

Although cycling is a seemingly simple, reciprocal task, muscles must adapt their function to satisfy changes in mechanical demands induced by higher crank torques and faster pedalling cadences. We examined whether muscle function was sensitive to these changes in mechanical demands across a wide range of pedalling conditions. We collected experimental data of cycling where crank torque and pedalling cadence were independently varied from 13 to 44 N m and 60 to 140 rpm. These data were used in conjunction with musculoskeletal simulations and a recently developed functional index-based approach to characterise the role of human lower-limb muscles. We found that in muscles that generate most of the mechanical power and work during cycling, greater crank torque induced shifts towards greater muscle activation, greater positive muscle-tendon unit (MTU) work and a more motor-like function, particularly in the limb extensors. Conversely, with faster pedalling cadence, the same muscles exhibited a phase advance in muscle activity prior to crank top dead centre, which led to greater negative MTU power and work and shifted the muscles to contract with more spring-like behaviour. Our results illustrate the capacity for muscles to adapt their function to satisfy the mechanical demands of the task, even during highly constrained reciprocal tasks such as cycling. Understanding how muscles shift their contractile performance under varied mechanical and environmental demands may inform decisions on how to optimise pedalling performance and to design targeted cycling rehabilitation therapies for muscle-specific injuries or deficits.


Asunto(s)
Ciclismo , Contracción Muscular , Fenómenos Biomecánicos , Humanos , Extremidad Inferior , Músculo Esquelético , Músculos , Torque
8.
Biol Lett ; 17(2): 20200612, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33529545

RESUMEN

Geometric scaling predicts a major challenge for legged, terrestrial locomotion. Locomotor support requirements scale identically with body mass (α M1), while force-generation capacity should scale α M2/3 as it depends on muscle cross-sectional area. Mammals compensate with more upright limb postures at larger sizes, but it remains unknown how sprawling tetrapods deal with this challenge. Varanid lizards are an ideal group to address this question because they cover an enormous body size range while maintaining a similar bent-limb posture and body proportions. This study reports the scaling of ground reaction forces and duty factor for varanid lizards ranging from 7 g to 37 kg. Impulses (force×time) (α M0.99-1.34) and peak forces (α M0.73-1.00) scaled higher than expected. Duty factor scaled α M0.04 and was higher for the hindlimb than the forelimb. The proportion of vertical impulse to total impulse increased with body size, and impulses decreased while peak forces increased with speed.


Asunto(s)
Lagartos , Animales , Fenómenos Biomecánicos , Miembro Anterior , Miembro Posterior , Locomoción
9.
J Anat ; 237(6): 1114-1135, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32710503

RESUMEN

There is a functional trade-off in the design of skeletal muscle. Muscle strength depends on the number of muscle fibers in parallel, while shortening velocity and operational distance depend on fascicle length, leading to a trade-off between the maximum force a muscle can produce and its ability to change length and contract rapidly. This trade-off becomes even more pronounced as animals increase in size because muscle strength scales with area (length2 ) while body mass scales with volume (length3 ). In order to understand this muscle trade-off and how animals deal with the biomechanical consequences of size, we investigated muscle properties in the pectoral girdle of varanid lizards. Varanids are an ideal group to study the scaling of muscle properties because they retain similar body proportions and posture across five orders of magnitude in body mass and are highly active, terrestrially adapted reptiles. We measured muscle mass, physiological cross-sectional area, fascicle length, proximal and distal tendon lengths, and proximal and distal moment arms for 27 pectoral girdle muscles in 13 individuals across 8 species ranging from 64 g to 40 kg. Standard and phylogenetically informed reduced major axis regression was used to investigate how muscle architecture properties scale with body size. Allometric growth was widespread for muscle mass (scaling exponent >1), physiological cross-sectional area (scaling exponent >0.66), but not tendon length (scaling exponent >0.33). Positive allometry for muscle mass was universal among muscles responsible for translating the trunk forward and flexing the elbow, and nearly universal among humeral protractors and wrist flexors. Positive allometry for PCSA was also common among trunk translators and humeral protractors, though less so than muscle mass. Positive scaling for fascicle length was not widespread, but common among humeral protractors. A higher proportion of pectoral girdle muscles scaled with positive allometry than our previous work showed for the pelvic girdle, suggesting that the center of mass may move cranially with body size in varanids, or that the pectoral girdle may assume a more dominant role in locomotion in larger species. Scaling exponents for physiological cross-sectional area among muscles primarily associated with propulsion or with a dual role were generally higher than those associated primarily with support against gravity, suggesting that locomotor demands have at least an equal influence on muscle architecture as body support. Overall, these results suggest that larger varanids compensate for the increased biomechanical demands of locomotion and body support at higher body sizes by developing larger pectoral muscles with higher physiological cross-sectional areas. The isometric scaling rates for fascicle length among locomotion-oriented pectoral girdle muscles suggest that larger varanids may be forced to use shorter stride lengths, but this problem may be circumvented by increases in limb excursion afforded by the sliding coracosternal joint.


Asunto(s)
Lagartos/anatomía & histología , Locomoción/fisiología , Fuerza Muscular/fisiología , Músculo Esquelético/anatomía & histología , Animales , Fenómenos Biomecánicos/fisiología , Tamaño Corporal/fisiología , Marcha/fisiología , Lagartos/fisiología , Músculo Esquelético/fisiología
10.
PLoS Biol ; 15(1): e2000473, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28076354

RESUMEN

The survival of both the hunter and the hunted often comes down to speed. Yet how fast an animal can run is intricately linked to its size, such that the fastest animals are not the biggest nor the smallest. The ability to maintain high speeds is dependent on the body's capacity to withstand the high stresses involved with locomotion. Yet even when standing still, scaling principles would suggest that the mechanical stress an animal feels will increase in greater demand than its body can support. So if big animals want to be fast, they must find solutions to overcome these high stresses. This article explores the ways in which extant animals mitigate size-related increases in musculoskeletal stress in an effort to help understand where all the giants have gone.


Asunto(s)
Tamaño Corporal , Animales , Fenómenos Biomecánicos , Peso Corporal , Huesos/anatomía & histología , Mamíferos/anatomía & histología , Mamíferos/fisiología , Músculos/anatomía & histología , Postura/fisiología , Carrera/fisiología
11.
J Exp Biol ; 222(Pt 6)2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30814297

RESUMEN

Characterisation of an organism's performance in different habitats provides insight into the conditions that allow it to survive and reproduce. In recent years, the northern quoll (Dasyurus hallucatus) - a medium-sized semi-arboreal marsupial native to northern Australia - has undergone significant population declines within open forest, woodland and riparian habitats, but less so in rocky areas. To help understand this decline, we quantified the biomechanical performance of wild northern quolls as they ran up inclined narrow (13 mm pole) and inclined wide (90 mm platform) substrates. We predicted that quolls may possess biomechanical adaptations to increase stability on narrow surfaces, which are more common in rocky habitats. Our results showed that quolls have some biomechanical characteristics consistent with a stability advantage on narrow surfaces. This includes the coupled use of limb pairs, as indicated via a decrease in footfall time, and an ability to produce corrective torques to counteract the toppling moments commonly encountered during gait on narrow surfaces. However, speed was constrained on narrow surfaces, and quolls did not adopt diagonal sequence gaits, unlike true arboreal specialists such as primates. In comparison with key predators, such as cats and dogs, northern quolls appear inferior in terrestrial environments but have a stability advantage at higher speeds on narrow supports. This may partially explain the heterogeneous declines in northern quoll populations among various habitats on mainland Australia.


Asunto(s)
Locomoción , Marsupiales/fisiología , Animales , Fenómenos Biomecánicos , Ambiente , Femenino , Masculino , Northern Territory
12.
J Neuroeng Rehabil ; 16(1): 57, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31092269

RESUMEN

BACKGROUND: Ankle exoskeletons offer a promising opportunity to offset mechanical deficits after stroke by applying the needed torque at the paretic ankle. Because joint torque is related to gait speed, it is important to consider the user's gait speed when determining the magnitude of assistive joint torque. We developed and tested a novel exoskeleton controller for delivering propulsive assistance which modulates exoskeleton torque magnitude based on both soleus muscle activity and walking speed. The purpose of this research is to assess the impact of the resulting exoskeleton assistance on post-stroke walking performance across a range of walking speeds. METHODS: Six participants with stroke walked with and without assistance applied to a powered ankle exoskeleton on the paretic limb. Walking speed started at 60% of their comfortable overground speed and was increased each minute (n00, n01, n02, etc.). We measured lower limb joint and limb powers, metabolic cost of transport, paretic and non-paretic limb propulsion, and trailing limb angle. RESULTS: Exoskeleton assistance increased with walking speed, verifying the speed-adaptive nature of the controller. Both paretic ankle joint power and total limb power increased significantly with exoskeleton assistance at six walking speeds (n00, n01, n02, n03, n04, n05). Despite these joint- and limb-level benefits associated with exoskeleton assistance, no subject averaged metabolic benefits were evident when compared to the unassisted condition. Both paretic trailing limb angle and integrated anterior paretic ground reaction forces were reduced with assistance applied as compared to no assistance at four speeds (n00, n01, n02, n03). CONCLUSIONS: Our results suggest that despite appropriate scaling of ankle assistance by the exoskeleton controller, suboptimal limb posture limited the conversion of exoskeleton assistance into forward propulsion. Future studies could include biofeedback or verbal cues to guide users into limb configurations that encourage the conversion of mechanical power at the ankle to forward propulsion. TRIAL REGISTRATION: N/A.


Asunto(s)
Articulación del Tobillo/fisiología , Dispositivo Exoesqueleto , Rehabilitación de Accidente Cerebrovascular/instrumentación , Velocidad al Caminar/fisiología , Caminata/fisiología , Adulto , Fenómenos Biomecánicos/fisiología , Electromiografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad
13.
J Exp Biol ; 220(Pt 9): 1643-1653, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28202584

RESUMEN

Hill-type models are ubiquitous in the field of biomechanics, providing estimates of a muscle's force as a function of its activation state and its assumed force-length and force-velocity properties. However, despite their routine use, the accuracy with which Hill-type models predict the forces generated by muscles during submaximal, dynamic tasks remains largely unknown. This study compared human gastrocnemius forces predicted by Hill-type models with the forces estimated from ultrasound-based measures of tendon length changes and stiffness during cycling, over a range of loads and cadences. We tested both a traditional model, with one contractile element, and a differential model, with two contractile elements that accounted for independent contributions of slow and fast muscle fibres. Both models were driven by subject-specific, ultrasound-based measures of fascicle lengths, velocities and pennation angles and by activation patterns of slow and fast muscle fibres derived from surface electromyographic recordings. The models predicted, on average, 54% of the time-varying gastrocnemius forces estimated from the ultrasound-based methods. However, differences between predicted and estimated forces were smaller under low speed-high activation conditions, with models able to predict nearly 80% of the gastrocnemius force over a complete pedal cycle. Additionally, the predictions from the Hill-type muscle models tested here showed that a similar pattern of force production could be achieved for most conditions with and without accounting for the independent contributions of different muscle fibre types.


Asunto(s)
Modelos Biológicos , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Adulto , Ciclismo/fisiología , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Ultrasonografía
14.
Front Zool ; 13: 8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26893606

RESUMEN

BACKGROUND: The functional design of skeletal muscles is shaped by conflicting selective pressures between support and propulsion, which becomes even more important as animals get larger. If larger animals were geometrically scaled up versions of smaller animals, increases in body size would cause an increase in musculoskeletal stress, a result of the greater scaling of mass in comparison to area. In large animals these stresses would come dangerously close to points of failure. By examining the architecture of 22 hindlimb muscles in 27 individuals from 9 species of varanid lizards ranging from the tiny 7.6 g Varanus brevicauda to the giant 40 kg Varanus komodoensis, we present a comprehensive dataset on the scaling of musculoskeletal architecture in monitor lizards (varanids), providing information about the phylogenetic constraints and adaptations of locomotor muscles in sprawling tetrapods. RESULTS: Scaling results for muscle mass, pennation and physiological cross-sectional area (PCSA), all suggest that larger varanids increase the relative force-generating capacity of femur adductors, knee flexors and ankle plantarflexors, with scaling exponents greater than geometric similarity predicts. Thus varanids mitigate the size-related increases in stress by increasing muscle mass and PCSA rather than adopting a more upright posture with size as is shown in other animals. As well as the scaling effects of muscle properties with body mass, the variation in muscle architecture with changes in hindlimb posture were also prominent. Within varanids, posture varies with habitat preference. Climbing lizards display a sprawling posture while terrestrial lizards display a more upright posture. Sprawling species required larger PCSAs and muscle masses in femur retractors, knee flexors, and ankle plantarflexors in order to support the body. CONCLUSIONS: Both size and posture-related muscle changes all suggest an increased role in support over propulsion, leading to a decrease in locomotor performance which has previously been shown with increases in size. These estimates suggest the giant Pleistocene varanid lizard (Varanus megalania priscus) would likely not have been able to outrun early humans with which it co-habitated the Australian landmass with.

15.
Nat Commun ; 15(1): 8594, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39366939

RESUMEN

An unusual pattern among the scaling laws in nature is that the fastest animals are neither the largest, nor the smallest, but rather intermediately sized. Because of the enormous diversity in animal shape, the mechanisms underlying this have long been difficult to determine. To address this, we challenge predictive human musculoskeletal simulations, scaled in mass from the size of a mouse (0.1 kg) to the size of an elephant (2000 kg), to move as fast as possible. Our models replicate patterns observed across extant animals including: (i) an intermediate optimal body mass for speed; (ii) a reduction in the cost of transport with increasing size; and (iii) crouched postures at smaller body masses and upright postures at larger body masses. Finally, we use our models to determine the mechanical limitations of speed with size, showing larger animals may be limited by their ability to produce muscular force while smaller animals are likely limited by their ability to produce larger ground reaction forces. Despite their bipedal gait, our models replicate patterns observed across quadrupedal animals, suggesting these biological phenomena likely represent general rules and are not the result of phylogenetic or other ecological factors that typically hinder comparative studies.


Asunto(s)
Mamíferos , Modelos Biológicos , Postura , Animales , Postura/fisiología , Fenómenos Biomecánicos , Mamíferos/fisiología , Humanos , Ratones , Marcha/fisiología , Tamaño Corporal/fisiología , Metabolismo Energético/fisiología , Elefantes/fisiología , Simulación por Computador , Músculo Esquelético/fisiología , Músculo Esquelético/metabolismo , Locomoción/fisiología
16.
Nat Commun ; 15(1): 2181, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467620

RESUMEN

Animal performance fundamentally influences behaviour, ecology, and evolution. It typically varies monotonously with size. A notable exception is maximum running speed; the fastest animals are of intermediate size. Here we show that this peculiar allometry results from the competition between two musculoskeletal constraints: the kinetic energy capacity, which dominates in small animals, and the work capacity, which reigns supreme in large animals. The ratio of both capacities defines the physiological similarity index Γ, a dimensionless number akin to the Reynolds number in fluid mechanics. The scaling of Γ indicates a transition from a dominance of muscle forces to a dominance of inertial forces as animals grow in size; its magnitude defines conditions of "dynamic similarity" that enable comparison and estimates of locomotor performance across extant and extinct animals; and the physical parameters that define it highlight opportunities for adaptations in musculoskeletal "design" that depart from the eternal null hypothesis of geometric similarity. The physiological similarity index challenges the Froude number as prevailing dynamic similarity condition, reveals that the differential growth of muscle and weight forces central to classic scaling theory is of secondary importance for the majority of terrestrial animals, and suggests avenues for comparative analyses of locomotor systems.


Asunto(s)
Carrera , Animales , Carrera/fisiología , Músculos , Fenómenos Biomecánicos
17.
R Soc Open Sci ; 11(5): 230590, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38716327

RESUMEN

Wearable robotic exoskeletons designed to assist human movement should integrate with the neuromusculoskeletal system. This means assisting movement while not perturbing motor control. We sought to test if passive ankle exoskeletons, which have been shown to successfully assist human gait, affect neuromuscular control of an exaggerated anterior-posterior standing sway task. Participants actively swayed while wearing an ankle exoskeleton that provided 0, 42 or 85 Nm rad-1 of additional stiffness to the ankle joint in resistance to dorsiflexion. Sway amplitude was controlled via biofeedback to elicit similar ankle angle displacements across conditions. With greater exoskeleton stiffness, participants swayed at lower sway-cycle frequencies and slower centre of pressure speeds. Furthermore, increasing exoskeleton stiffness resulted in longer operating lengths of the medial gastrocnemius and overall reduced plantar flexor muscle activation. For the soleus, there was also a temporal shift in the cross-correlation of its electromyogram with the centre of pressure displacement, meaning that muscle activation peaked later than anterior sway displacement. Together, these data suggest that assistive ankle exoskeletons influence neuromuscular control of ankle-based sway tasks. Changes in fascicle lengths could influence afferent feedback signals and the short-range stiffness of ankle muscles, while shifts in muscle activation timing suggest changes in neural control. The observed neuromuscular adaptations to exoskeleton assistance demonstrate the potential implications for standing balance and overall movement control, prompting future investigations.

18.
J Biomech ; 173: 112244, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39067185

RESUMEN

The gender gap in STEM (Science, Technology, Engineering, and Mathematics) is among the widest across education and professional fields, with an underrepresentation of girls and women, particularly in engineering and biomechanics. This issue begins early in education and worsens as females progress into more senior roles. To address this gap, we designed and implemented the Biomechanics Research and Innovation Challenge (BRInC), a 100-day STEM program focused on mentoring and role modelling to engage high school girls and early-career biomechanists at key phases where they most commonly disengage in STEM. We evaluated the influence of the program on (i) identity and perceptions towards science, engineering, and biomechanics; (ii) attitudes towards biomechanics, maths and science; and (iii) attitudes towards gender bias, education and career aspirations in STEM, within high school girls following participation in the BRInC program. We observed significant and positive shifts in girls' perceptions of both biomechanics and engineering. Participation in the program appeared to lead to favourable shifts in attitudes towards biomechanics, maths, and science and fostered a positive influence on girls' education and career aspirations, igniting an interest in future research opportunities. Innovative STEM engagement programs, such as BRInC, highlight the promising potential of targeted and bespoke approaches to address the underrepresentation of females in biomechanics and STEM-related education and careers. Future programs should strive to enhance socioeconomic and cultural diversity, employ whole of life-cycle approaches by offering programs for girls and women at various phases of the STEM pathway, and prioritize impact assessments to effectively monitor progress.


Asunto(s)
Ingeniería , Tutoría , Humanos , Femenino , Fenómenos Biomecánicos , Adolescente , Matemática , Actitud , Ciencia/educación , Tecnología , Selección de Profesión , Percepción/fisiología
19.
J Biomech ; 166: 112048, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38493577

RESUMEN

Tendon xanthoma and altered mechanical properties have been demonstrated in people with familial hypercholesterolaemia. However, it is unclear whether mild, untreated hypercholesterolaemia alters musculotendinous mechanical properties and muscle architecture. We conducted a case-control study of adults aged 50 years and over, without lower limb injury or history of statin medication. Based on fasting low-density lipoprotein (LDL) cholesterol levels, 6 participants had borderline high LDL (>3.33 mmol/L) and 6 had optimal LDL cholesterol (<2.56 mmol/L). Using shear wave elastography, shear wave velocity (SWV) of the Achilles tendon and gastrocnemius medialis muscle (a proxy for stiffness), along with muscle fascicle length and pennation angle were measured under four passive tensile loads (0, 0.5, 1.0, 1.5 kg) applied via a pulley system. Differences between groups were found for tendon SWV but not muscle SWV, fascicle length or pennation angle. Participants with hypercholesterolaemia showed greater SWV (mean difference, 95 % CI: 2.4 m/s, 0.9 to 4.0, P = 0.024) compared to the control group across all loads. These findings suggest that adults with mild hypercholesterolaemia have increased tendon stiffness under low passive loads, while muscle was not affected. Future research is needed to confirm findings in a larger cohort and explore the impact of hypercholesterolaemia on tendon fatigue injury and tendinopathy.


Asunto(s)
Tendón Calcáneo , Hipercolesterolemia , Traumatismos de los Tendones , Adulto , Humanos , Persona de Mediana Edad , Anciano , Tendón Calcáneo/fisiología , Estudios de Casos y Controles , Ultrasonografía , Músculo Esquelético/fisiología
20.
J Biomech ; 155: 111640, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37244210

RESUMEN

Skeletal muscle is the engine that powers what is arguably the most essential and defining feature of human and animal life-locomotion. Muscles function to change length and produce force to enable movement, posture, and balance. Despite this seemingly simple role, skeletal muscle displays a variety of phenomena that still remain poorly understood. These phenomena are complex-the result of interactions between active and passive machinery, as well as mechanical, chemical and electrical processes. The emergence of imaging technologies over the past several decades has led to considerable discoveries regarding how skeletal muscles function in vivo where activation levels are submaximal, and the length and velocity of contracting muscle fibres are transient. However, our knowledge of the mechanisms of muscle behaviour during everyday human movements remains far from complete. In this review, we discuss the principal advancements in imaging technology that have led to discoveries to improve our understanding of in vivo muscle function over the past 50 years. We highlight the knowledge that has emerged from the development and application of various techniques, including ultrasound imaging, magnetic resonance imaging, and elastography to characterise muscle design and mechanical properties. We emphasize that our inability to measure the forces produced by skeletal muscles still poses a significant challenge, and that future developments to accurately and reliably measure individual muscle forces will promote newfrontiers in biomechanics, physiology, motor control, and robotics. Finally, we identify critical gaps in our knowledge and future challenges that we hope can be solved as a biomechanics community in the next 50 years.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Animales , Humanos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiología , Fibras Musculares Esqueléticas/fisiología , Locomoción/fisiología , Fenómenos Mecánicos , Fenómenos Biomecánicos , Contracción Muscular/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA