Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 75(1): 184-199.e10, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31076284

RESUMEN

The comprehensive but specific identification of RNA-binding proteins as well as the discovery of RNA-associated protein functions remain major challenges in RNA biology. Here we adapt the concept of RNA dependence, defining a protein as RNA dependent when its interactome depends on RNA. We converted this concept into a proteome-wide, unbiased, and enrichment-free screen called R-DeeP (RNA-dependent proteins), based on density gradient ultracentrifugation. Quantitative mass spectrometry identified 1,784 RNA-dependent proteins, including 537 lacking known links to RNA. Exploiting the quantitative nature of R-DeeP, proteins were classified as not, partially, or completely RNA dependent. R-DeeP identified the transcription factor CTCF as completely RNA dependent, and we uncovered that RNA is required for the CTCF-chromatin association. Additionally, R-DeeP allows reconstruction of protein complexes based on co-segregation. The whole dataset is available at http://R-DeeP.dkfz.de, providing proteome-wide, specific, and quantitative identification of proteins with RNA-dependent interactions and aiming at future functional discovery of RNA-protein complexes.


Asunto(s)
Centrifugación por Gradiente de Densidad/métodos , Mapas de Interacción de Proteínas , Proteoma/genética , Proteínas de Unión al ARN/genética , ARN/genética , Factores de Transcripción/genética , Centrifugación por Gradiente de Densidad/instrumentación , Cromatina/química , Cromatina/metabolismo , Regulación de la Expresión Génica , Ontología de Genes , Células HeLa , Humanos , Difusión de la Información , Internet , Anotación de Secuencia Molecular , Unión Proteica , Proteoma/clasificación , Proteoma/metabolismo , Proteómica/métodos , ARN/metabolismo , Proteínas de Unión al ARN/clasificación , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/clasificación , Factores de Transcripción/metabolismo
2.
Nucleic Acids Res ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917322

RESUMEN

From transcription to decay, RNA-binding proteins (RBPs) influence RNA metabolism. Using the RBP2GO database that combines proteome-wide RBP screens from 13 species, we investigated the RNA-binding features of 176 896 proteins. By compiling published lists of RNA-binding domains (RBDs) and RNA-related protein family (Rfam) IDs with lists from the InterPro database, we analyzed the distribution of the RBDs and Rfam IDs in RBPs and non-RBPs to select RBDs and Rfam IDs that were enriched in RBPs. We also explored proteins for their content in intrinsically disordered regions (IDRs) and low complexity regions (LCRs). We found a strong positive correlation between IDRs and RBDs and a co-occurrence of specific LCRs. Our bioinformatic analysis indicated that RBDs/Rfam IDs were strong indicators of the RNA-binding potential of proteins and helped predicting new RBP candidates, especially in less investigated species. By further analyzing RBPs without RBD, we predicted new RBDs that were validated by RNA-bound peptides. Finally, we created the RBP2GO composite score by combining the RBP2GO score with new quality factors linked to RBDs and Rfam IDs. Based on the RBP2GO composite score, we compiled a list of 2018 high-confidence human RBPs. The knowledge collected here was integrated into the RBP2GO database at https://RBP2GO-2-Beta.dkfz.de.

3.
Int J Cancer ; 154(6): 1029-1042, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37947765

RESUMEN

Non-small cell lung cancer (NSCLC) patients are often elderly or unfit and thus cannot tolerate standard aggressive therapy regimes. In our study, we test the efficacy of the DNA-hypomethylating agent decitabine (DAC) in combination with all-trans retinoic acid (ATRA), which has been shown to possess little systemic adverse effects. Screening a broad panel of 56 NSCLC cell lines uncovered a decrease in cell viability after the combination treatment in 77% of the cell lines. Transcriptomics, proteomics, proliferation and migration profiling revealed that fast proliferating and slowly migrating cell lines were more sensitive to the drug combination. The comparison of mutational profiles found oncogenic KRAS mutations only in sensitive cells. Additionally, different cell lines showed a heterogeneous gene expression response to the treatment pointing to diverse mechanisms of action. Silencing KRAS, RIG-I or RARB partially reversed the sensitivity of KRAS-mutant NCI-H460 cells. To study resistance, we generated two NCI-H460 cell populations resistant to ATRA and DAC, which migrated faster and proliferated slower than the parental sensitive cells and showed signs of senescence. In summary, this comprehensive dataset uncovers a broad sensitivity of NSCLC cells to the combinatorial treatment with DAC and ATRA and indicates that migration and proliferation capacities correlate with and could thus serve as determinants for drug sensitivity in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Anciano , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Tretinoina/farmacología , Tretinoina/uso terapéutico , Decitabina/farmacología , Decitabina/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Línea Celular Tumoral , Proliferación Celular
4.
J Cell Sci ; 134(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34028540

RESUMEN

The heat-shock response is critical for the survival of all organisms. Metastasis-associated long adenocarcinoma transcript 1 (MALAT1) is a long noncoding RNA localized in nuclear speckles, but its physiological role remains elusive. Here, we show that heat shock induces translocation of MALAT1 to a distinct nuclear body named the heat shock-inducible noncoding RNA-containing nuclear (HiNoCo) body in mammalian cells. MALAT1-knockout A549 cells showed reduced proliferation after heat shock. The HiNoCo body, which is formed adjacent to nuclear speckles, is distinct from any other known nuclear bodies, including the nuclear stress body, Cajal body, germs, paraspeckles, nucleoli and promyelocytic leukemia body. The formation of HiNoCo body is reversible and independent of heat shock factor 1, the master transcription regulator of the heat-shock response. Our results suggest the HiNoCo body participates in heat shock factor 1-independent heat-shock responses in mammalian cells.


Asunto(s)
Adenocarcinoma , ARN Largo no Codificante , Animales , Núcleo Celular/genética , Cuerpos de Inclusión Intranucleares , ARN Largo no Codificante/genética , ARN no Traducido
5.
Nucleic Acids Res ; 49(D1): D425-D436, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33196814

RESUMEN

RNA-protein complexes have emerged as central players in numerous key cellular processes with significant relevance in health and disease. To further deepen our knowledge of RNA-binding proteins (RBPs), multiple proteome-wide strategies have been developed to identify RBPs in different species leading to a large number of studies contributing experimentally identified as well as predicted RBP candidate catalogs. However, the rapid evolution of the field led to an accumulation of isolated datasets, hampering the access and comparison of their valuable content. Moreover, tools to link RBPs to cellular pathways and functions were lacking. Here, to facilitate the efficient screening of the RBP resources, we provide RBP2GO (https://RBP2GO.DKFZ.de), a comprehensive database of all currently available proteome-wide datasets for RBPs across 13 species from 53 studies including 105 datasets identifying altogether 22 552 RBP candidates. These are combined with the information on RBP interaction partners and on the related biological processes, molecular functions and cellular compartments. RBP2GO offers a user-friendly web interface with an RBP scoring system and powerful advanced search tools allowing forward and reverse searches connecting functions and RBPs to stimulate new research directions.


Asunto(s)
Bases de Datos de Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Ontología de Genes , Humanos , Unión Proteica , Proteoma/metabolismo , Reproducibilidad de los Resultados , Especificidad de la Especie , Estadística como Asunto , Interfaz Usuario-Computador
6.
RNA Biol ; 19(1): 588-593, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465826

RESUMEN

The ability to precisely alter the genome holds immense potential for molecular biology, medicine and biotechnology. The development of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) into a genomic editing tool has vastly simplified genome engineering. Here, we explored the use of chemically synthesized chimeric oligonucleotides encoding a target-specific crRNA (CRISPR RNA) fused to a single-stranded DNA repair template for RNP-mediated precision genome editing. By generating three clinically relevant oncogenic driver mutations, two non-stop extension mutations, an FGFRi resistance mutation and a single nucleotide change, we demonstrate the ability of chimeric oligos to form RNPs and direct Cas9 to effectively induce genome editing. Further, we demonstrate that the polarity of the chimeric oligos is crucial: only chimeric oligos with the single-stranded DNA repair template fused to the 3'-end of the crRNA are functional for accurate editing, while templates fused to the 5'-end are ineffective. We also find that chimeras can perform editing with both symmetric and asymmetric single-stranded DNA repair templates. Depending on the target locus, the editing efficiency using chimeric RNPs is similar to or less than the efficiency of editing using the bipartite standard RNPs. Our results indicate that chimeric RNPs comprising RNA-DNA oligos formed from fusing the crRNA and DNA repair templates can successfully induce precise edits. While chimeric RNPs do not display an advantage over standard RNPs, they nonetheless represent a viable approach for one-molecule precision genome editing.


Asunto(s)
Edición Génica , ARN Guía de Kinetoplastida , Sistemas CRISPR-Cas , Quimera/metabolismo , ADN de Cadena Simple/genética , Edición Génica/métodos , Oligonucleótidos/genética , ARN Guía de Kinetoplastida/genética , Ribonucleoproteínas/metabolismo
7.
Nucleic Acids Res ; 48(W1): W287-W291, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32392303

RESUMEN

RNA molecules fold into complex structures as a result of intramolecular interactions between their nucleotides. The function of many non-coding RNAs and some cis-regulatory elements of messenger RNAs highly depends on their fold. Single-nucleotide variants (SNVs) and other types of mutations can disrupt the native function of an RNA element by altering its base pairing pattern. Identifying the effect of a mutation on an RNA's structure is, therefore, a crucial step in evaluating the impact of mutations on the post-transcriptional regulation and function of RNAs within the cell. Even though a single nucleotide variation can have striking impacts on the structure formation, interpreting and comparing the impact usually needs expertise and meticulous efforts. Here, we present MutaRNA, a web server for visualization and interpretation of mutation-induced changes on the RNA structure in an intuitive and integrative fashion. To this end, probabilities of base pairing and position-wise unpaired probabilities of wildtype and mutated RNA sequences are computed and compared. Differential heatmap-like dot plot representations in combination with circular plots and arc diagrams help to identify local structure abberations, which are otherwise hidden in standard outputs. Eventually, MutaRNA provides a comprehensive and comparative overview of the mutation-induced changes in base pairing potentials and accessibility. The MutaRNA web server is freely available at http://rna.informatik.uni-freiburg.de/MutaRNA.


Asunto(s)
Mutación , ARN/química , Programas Informáticos , Regiones no Traducidas 5' , Apoferritinas/genética , Emparejamiento Base , Genes ras , Hierro/metabolismo , Elementos de Respuesta
8.
Genes Dev ; 27(23): 2543-8, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24298054

RESUMEN

Insulin-like growth factor 2 (IGF2), a developmentally regulated and maternally imprinted gene, is frequently overexpressed in pediatric cancers. Although loss of imprinting (LOI) at fetal promoters contributes to increased IGF2 in tumors, the magnitude of IGF2 expression suggests the involvement of additional regulatory mechanisms. A microRNA (miRNA) screen of primary Wilms' tumors identified specific overexpression of miR-483-5p, which is embedded within the IGF2 gene. Unexpectedly, the IGF2 mRNA itself is transcriptionally up-regulated by miR-483-5p. A nuclear pool of miR-483-5p binds directly to the 5' untranslated region (UTR) of fetal IGF2 mRNA, enhancing the association of the RNA helicase DHX9 to the IGF2 transcript and promoting IGF2 transcription. Ectopic expression of miR-483-5p in IGF2-dependent sarcoma cells is correlated with increased tumorigenesis in vivo. Together, these observations suggest a functional positive feedback loop of an intronic miRNA on transcription of its host gene.


Asunto(s)
Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Factor II del Crecimiento Similar a la Insulina/genética , Intrones , MicroARNs/metabolismo , Regiones Promotoras Genéticas/genética , Regiones no Traducidas 5'/genética , Línea Celular , Núcleo Celular/metabolismo , ARN Helicasas DEAD-box/metabolismo , Feto/metabolismo , Humanos , Factor II del Crecimiento Similar a la Insulina/metabolismo , Proteínas de Neoplasias/metabolismo , Unión Proteica , ARN Mensajero/metabolismo
9.
Nucleic Acids Res ; 46(9): 4456-4468, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29538770

RESUMEN

Targeted modulation of gene expression represents a valuable approach to understand the mechanisms governing gene regulation. In a therapeutic context, it can be exploited to selectively modify the aberrant expression of a disease-causing gene or to provide the target cells with a new function. Here, we have established a novel platform for achieving precision epigenome editing using designer epigenome modifiers (DEMs). DEMs combine in a single molecule a DNA binding domain based on highly specific transcription activator-like effectors (TALEs) and several effector domains capable of inducing DNA methylation and locally altering the chromatin structure to silence target gene expression. We designed DEMs to target two human genes, CCR5 and CXCR4, with the aim of epigenetically silencing their expression in primary human T lymphocytes. We observed robust and sustained target gene silencing associated with reduced chromatin accessibility, increased promoter methylation at the target sites and undetectable changes in global gene expression. Our results demonstrate that DEMs can be successfully used to silence target gene expression in primary human cells with remarkably high specificity, paving the way for the establishment of a potential new class of therapeutics.


Asunto(s)
Silenciador del Gen , División Celular/genética , Células Cultivadas , Metilación de ADN , Células HEK293 , Humanos , Receptores CCR5/genética , Receptores CCR5/metabolismo , Linfocitos T/metabolismo , Efectores Tipo Activadores de la Transcripción/química , Factores de Transcripción/metabolismo
10.
Nucleic Acids Res ; 46(1): e4, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29059327

RESUMEN

Deciphering the functions of long non-coding RNAs (lncRNAs) is facilitated by visualization of their subcellular localization using in situ hybridization (ISH) techniques. We evaluated four different ISH methods for detection of MALAT1 and CYTOR in cultured cells: a multiple probe detection approach with or without enzymatic signal amplification, a branched-DNA (bDNA) probe and an LNA-modified probe with enzymatic signal amplification. All four methods adequately stained MALAT1 in the nucleus in all of three cell lines investigated, HeLa, NHDF and T47D, and three of the methods detected the less expressed CYTOR. The sensitivity of the four ISH methods was evaluated by image analysis. In all three cell lines, the two methods involving enzymatic amplification gave the most intense MALAT1 signal, but the signal-to-background ratios were not different. CYTOR was best detected using the bDNA method. All four ISH methods showed significantly reduced MALAT1 signal in knock-out cells, and siRNA-induced knock-down of CYTOR resulted in significantly reduced CYTOR ISH signal, indicating good specificity of the probe designs and detection systems. Our data suggest that the ISH methods allow detection of both abundant and less abundantly expressed lncRNAs, although the latter required the use of the most specific and sensitive probe detection system.


Asunto(s)
Núcleo Celular/genética , Regulación de la Expresión Génica , Hibridación Fluorescente in Situ/métodos , ARN Largo no Codificante/genética , Células A549 , Línea Celular , Línea Celular Tumoral , Sondas de ADN/genética , Amplificación de Genes , Células HeLa , Humanos , Células MCF-7 , Reproducibilidad de los Resultados
11.
Nucleic Acids Res ; 46(11): 5504-5524, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29912433

RESUMEN

Primate-specific NBL2 macrosatellite is hypomethylated in several types of tumors, yet the consequences of this DNA hypomethylation remain unknown. We show that NBL2 conserved repeats are close to the centromeres of most acrocentric chromosomes. NBL2 associates with the perinucleolar region and undergoes severe demethylation in a subset of colorectal cancer (CRC). Upon DNA hypomethylation and histone acetylation, NBL2 repeats are transcribed in tumor cell lines and primary CRCs. NBL2 monomers exhibit promoter activity, and are contained within novel, non-polyA antisense lncRNAs, which we designated TNBL (Tumor-associated NBL2 transcript). TNBL is stable throughout the mitotic cycle, and in interphase nuclei preferentially forms a perinucleolar aggregate in the proximity of a subset of NBL2 loci. TNBL aggregates interact with the SAM68 perinucleolar body in a mirror-image cancer specific perinucleolar structure. TNBL binds with high affinity to several proteins involved in nuclear functions and RNA metabolism, such as CELF1 and NPM1. Our data unveil novel DNA and RNA structural features of a non-coding macrosatellite frequently altered in cancer.


Asunto(s)
Neoplasias del Colon/genética , Metilación de ADN/genética , ADN Satélite/genética , ARN Largo no Codificante/genética , Acetilación , Neoplasias de la Mama/genética , Proteínas CELF1/metabolismo , Células CACO-2 , Línea Celular Tumoral , Núcleo Celular/metabolismo , Femenino , Células HCT116 , Histonas/metabolismo , Humanos , Mitosis/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Neoplasias Ováricas/genética
12.
Nucleic Acids Res ; 46(19): 10405-10416, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30102375

RESUMEN

Long non-coding RNAs (lncRNAs) regulate vital biological processes, including cell proliferation, differentiation and development. A subclass of lncRNAs is synthesized from microRNA (miRNA) host genes (MIRHGs) due to pre-miRNA processing, and are categorized as miRNA-host gene lncRNAs (lnc-miRHGs). Presently, the cellular function of most lnc-miRHGs is not well understood. We demonstrate a miRNA-independent role for a nuclear-enriched lnc-miRHG in cell cycle progression. MIR100HG produces spliced and stable lncRNAs that display elevated levels during the G1 phase of the cell cycle. Depletion of MIR100HG-encoded lncRNAs in human cells results in aberrant cell cycle progression without altering the levels of miRNA encoded within MIR100HG. Notably, MIR100HG interacts with HuR/ELAVL1 as well as with several HuR-target mRNAs. Further, MIR100HG-depleted cells show reduced interaction between HuR and three of its target mRNAs, indicating that MIR100HG facilitates interaction between HuR and target mRNAs. Our studies have unearthed novel roles played by a MIRHG-encoded lncRNA in regulating RNA binding protein activity, thereby underscoring the importance of determining the function of several hundreds of lnc-miRHGs that are present in human genome.


Asunto(s)
Ciclo Celular/genética , Proteína 1 Similar a ELAV/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Diferenciación Celular/genética , División Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , ARN Mensajero/genética , Proteínas de Unión al ARN/genética
13.
EMBO J ; 34(3): 344-60, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25510864

RESUMEN

In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)-379/410 genomic cluster as a key component of GC/GR-driven metabolic dysfunction. Particularly, miR-379 was up-regulated in mouse models of hyperglucocorticoidemia and obesity as well as human liver in a GC/GR-dependent manner. Hepatocyte-specific silencing of miR-379 substantially reduced circulating very-low-density lipoprotein (VLDL)-associated triglyceride (TG) levels in healthy mice and normalized aberrant lipid profiles in metabolically challenged animals, mediated through miR-379 effects on key receptors in hepatic TG re-uptake. As hepatic miR-379 levels were also correlated with GC and TG levels in human obese patients, the identification of a GC/GR-controlled miRNA cluster not only defines a novel layer of hormone-dependent metabolic control but also paves the way to alternative miRNA-based therapeutic approaches in metabolic dysfunction.


Asunto(s)
Glucocorticoides/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , MicroARNs/metabolismo , Obesidad/metabolismo , Animales , Línea Celular , Femenino , Silenciador del Gen , Glucocorticoides/genética , Humanos , Lipoproteínas VLDL/genética , Lipoproteínas VLDL/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Obesos , MicroARNs/genética , Obesidad/genética , Triglicéridos/genética , Triglicéridos/metabolismo
14.
Hepatology ; 68(5): 1817-1832, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29790588

RESUMEN

The identification of viability-associated long noncoding RNAs (lncRNAs) might be a promising rationale for new therapeutic approaches in liver cancer. Here, we applied an RNA interference screening approach in hepatocellular carcinoma (HCC) cell lines to find viability-associated lncRNAs. Among the multiple identified lncRNAs with a significant impact on HCC cell viability, we selected cancer susceptibility 9 (CASC9) due to the strength of its phenotype, expression, and up-regulation in HCC versus normal liver. CASC9 regulated viability across multiple HCC cell lines as shown by clustered regularly interspaced short palindromic repeats interference and single small interfering RNA (siRNA)-mediated and siRNA pool-mediated depletion of CASC9. Further, CASC9 depletion caused an increase in apoptosis and a decrease of proliferation. We identified the RNA binding protein heterogeneous nuclear ribonucleoprotein L (HNRNPL) as a CASC9 interacting protein by RNA affinity purification and validated it by native RNA immunoprecipitation. Knockdown of HNRNPL mimicked the loss-of-viability phenotype observed upon CASC9 depletion. Analysis of the proteome (stable isotope labeling with amino acids in cell culture) of CASC9-depleted and HNRNPL-depleted cells revealed a set of coregulated genes which implied a role of the CASC9:HNRNPL complex in AKT signaling and DNA damage sensing. CASC9 expression levels were elevated in patient-derived tumor samples compared to normal control tissue and had a significant association with overall survival of HCC patients. In a xenograft chicken chorioallantoic membrane model, we measured decreased tumor size after knockdown of CASC9. Conclusion: Taken together, we provide a comprehensive list of viability-associated lncRNAs in HCC; we identified the CASC9:HNRNPL complex as a clinically relevant viability-associated lncRNA/protein complex which affects AKT signaling and DNA damage sensing in HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo L/metabolismo , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Pollos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/metabolismo , ARN Interferente Pequeño , Transducción de Señal
15.
Nucleic Acids Res ; 45(9): 5458-5469, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28160600

RESUMEN

Little is known about the function of most non-coding RNAs (ncRNAs). The majority of long ncRNAs (lncRNAs) is expressed at very low levels and it is a matter of intense debate whether these can be of functional relevance. Here, we identified lncRNAs regulating the viability of lung cancer cells in a high-throughput RNA interference screen. Based on our previous expression profiling, we designed an siRNA library targeting 638 lncRNAs upregulated in human cancer. In a functional siRNA screen analyzing the viability of lung cancer cells, the most prominent hit was a novel lncRNA which we called Viability Enhancing LUng Cancer Transcript (VELUCT). In silico analyses confirmed the non-coding properties of the transcript. Surprisingly, VELUCT was below the detection limit in total RNA from NCI-H460 cells by RT-qPCR as well as RNA-Seq, but was robustly detected in the chromatin-associated RNA fraction. It is an extremely low abundant lncRNA with an RNA copy number of less than one copy per cell. Blocking transcription with actinomycin D revealed that VELUCT RNA was highly unstable which may partially explain its low steady-state concentration. Despite its extremely low abundance, loss-of-function of VELUCT with three independent experimental approaches in three different lung cancer cell lines led to a significant reduction of cell viability: Next to four individual siRNAs, also two complex siPOOLs as well as two antisense oligonucleotides confirmed the strong and specific phenotype. In summary, the extremely low abundant lncRNA VELUCT is essential for regulation of cell viability in several lung cancer cell lines. Hence, VELUCT is the first example for a lncRNA that is expressed at a very low level, but has a strong loss-of-function phenotype. Thus, our study proves that at least individual low-abundant lncRNAs can play an important functional role.


Asunto(s)
Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , ARN Largo no Codificante/genética , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Cromatina/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Humanos , Estabilidad del ARN/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo
16.
Nucleic Acids Res ; 45(3): e12, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28180319

RESUMEN

The CRISPR/Cas9 system provides a revolutionary genome editing tool for all areas of molecular biology. In long non-coding RNA (lncRNA) research, the Cas9 nuclease can delete lncRNA genes or introduce RNA-destabilizing elements into their locus. The nuclease-deficient dCas9 mutant retains its RNA-dependent DNA-binding activity and can modulate gene expression when fused to transcriptional repressor or activator domains. Here, we systematically analyze whether CRISPR approaches are suitable to target lncRNAs. Many lncRNAs are derived from bidirectional promoters or overlap with promoters or bodies of sense or antisense genes. In a genome-wide analysis, we find only 38% of 15929 lncRNA loci are safely amenable to CRISPR applications while almost two-thirds of lncRNA loci are at risk to inadvertently deregulate neighboring genes. CRISPR- but not siPOOL or Antisense Oligo (ASO)-mediated targeting of lncRNAs NOP14-AS1, LOC389641, MNX1-AS1 or HOTAIR also affects their respective neighboring genes. Frequently overlooked, the same restrictions may apply to mRNAs. For example, the tumor suppressor TP53 and its head-to-head neighbor WRAP53 are jointly affected by the same sgRNAs but not siPOOLs. Hence, despite the advantages of CRISPR/Cas9 to modulate expression bidirectionally and in cis, approaches based on ASOs or siPOOLs may be the better choice to target specifically the transcript from complex loci.


Asunto(s)
Sistemas CRISPR-Cas , ARN Largo no Codificante/genética , Línea Celular , Técnicas de Silenciamiento del Gen/métodos , Marcación de Gen/efectos adversos , Marcación de Gen/métodos , Genoma Humano , Células HEK293 , Células HeLa , Humanos , Modelos Genéticos , Regiones Promotoras Genéticas , Interferencia de ARN
17.
Nucleic Acids Res ; 45(21): 12496-12508, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29059299

RESUMEN

Long non-coding RNAs (lncRNAs) have been proven to play important roles in diverse cellular processes including the DNA damage response. Nearly 40% of annotated lncRNAs are transcribed in antisense direction to other genes and have often been implicated in their regulation via transcript- or transcription-dependent mechanisms. However, it remains unclear whether inverse correlation of gene expression would generally point toward a regulatory interaction between the genes. Here, we profiled lncRNA and mRNA expression in lung and liver cancer cells after exposure to DNA damage. Our analysis revealed two pairs of mRNA-lncRNA sense-antisense transcripts being inversely expressed upon DNA damage. The lncRNA NOP14-AS1 was strongly upregulated upon DNA damage, while the mRNA for NOP14 was downregulated, both in a p53-dependent manner. For another pair, the lncRNA LIPE-AS1 was downregulated, while its antisense mRNA CEACAM1 was upregulated. To test whether as expected the antisense genes would regulate each other resulting in this highly significant inverse correlation, we employed antisense oligonucleotides and RNAi to study transcript-dependent effects as well as dCas9-based transcriptional modulation by CRISPRi/CRISPRa for transcription-dependent effects. Surprisingly, despite the strong stimulus-dependent inverse correlation, our data indicate that neither transcript- nor transcription-dependent mechanisms explain the inverse regulation of NOP14-AS1:NOP14 or LIPE-AS1:CEACAM1 expression. Hence, sense-antisense pairs whose expression is strongly-positively or negatively-correlated can be nonetheless regulated independently. This highlights the requirement of individual experimental studies for each antisense pair and prohibits drawing conclusions on regulatory mechanisms from expression correlations.


Asunto(s)
Regulación de la Expresión Génica , ARN sin Sentido/biosíntesis , ARN Mensajero/biosíntesis , Línea Celular , Daño del ADN , Humanos , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
Proc Natl Acad Sci U S A ; 113(47): E7535-E7544, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27821766

RESUMEN

Long noncoding RNAs (lncRNAs) are important regulators of cellular homeostasis. However, their contribution to the cancer phenotype still needs to be established. Herein, we have identified a p53-induced lncRNA, TP53TG1, that undergoes cancer-specific promoter hypermethylation-associated silencing. In vitro and in vivo assays identify a tumor-suppressor activity for TP53TG1 and a role in the p53 response to DNA damage. Importantly, we show that TP53TG1 binds to the multifaceted DNA/RNA binding protein YBX1 to prevent its nuclear localization and thus the YBX1-mediated activation of oncogenes. TP53TG1 epigenetic inactivation in cancer cells releases the transcriptional repression of YBX1-targeted growth-promoting genes and creates a chemoresistant tumor. TP53TG1 hypermethylation in primary tumors is shown to be associated with poor outcome. The epigenetic loss of TP53TG1 therefore represents an altered event in an lncRNA that is linked to classical tumoral pathways, such as p53 signaling, but is also connected to regulatory networks of the cancer cell.


Asunto(s)
Proteínas de Unión al ADN/genética , Neoplasias/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Daño del ADN , Metilación de ADN , Regulación hacia Abajo , Epigénesis Genética , Células HCT116 , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias/metabolismo , Pronóstico , Regiones Promotoras Genéticas , Transducción de Señal , Proteína 1 de Unión a la Caja Y/genética
19.
EMBO J ; 33(18): 1981-3, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25216676

RESUMEN

tRNA biology has lately seen a revival with the discovery of tRNA cleavage products as mediators of stress responses. In this issue of The EMBO Journal, Blanco et al now report that tRNA methylation, by protecting from cleavage, is relevant for normal brain development. The versatility of tRNA is further emphasized by a recent study in Cell that uncovered differential expression of tRNAs as a means to accustom codon usage bias to the needs in proliferating versus differentiating cells.


Asunto(s)
Regulación de la Expresión Génica , Metiltransferasas/metabolismo , Enfermedades del Sistema Nervioso/congénito , Enfermedades del Sistema Nervioso/patología , ARN de Transferencia/metabolismo , Animales , Humanos
20.
RNA Biol ; 15(1): 62-69, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-28873329

RESUMEN

As a genetic disease, cancer is caused by the activation of oncogenes and the inhibition of tumor suppressor genes via genetic and epigenetic mechanisms. Given the important role of energy metabolism in tumors, we analyzed the cancer-derived mutations occurring in the DNA of the mitochondrion. Mutations in the mitochondrial DNA (mtDNA) compared to nuclear DNA are 62% decreased relative to the coding length per chromosome. We find that the majority of these mutations affects highly conserved nucleotides - significantly exceeding the conservation of the mtDNA - and are devoid of single nucleotide polymorphisms (SNPs). Surprisingly, the leading resources for tumor genetics information universally use the standard genetic code for translation of nucleotide into amino acid sequences in their online resources. However, the nuclear and mitochondrial genetic codes differ for four codons and the usage of incomplete STOP codons. Hence, we analyze and curate the consequences for all mutations in the mtDNA and comprehensively reclassify missense, nonsense and synonymous mutations accordingly. In total, 10% of the mutations are incorrectly translated leading to significant changes in the distribution of mutation types with tripling of nonsense and 69% loss of nonstop extension mutations. Lastly, we provide a curated dataset of coding and non-coding mitochondrial mutations in cancer merged, standardized, duplicate-free and aggregated from two databases as a resource including orthogonal data on their high conservation and SNPs. This study generally highlights the need to universally regard the important differences between the standard and mitochondrial genetic code in life science research.


Asunto(s)
Núcleo Celular/genética , ADN Mitocondrial/genética , Mitocondrias/genética , Neoplasias/genética , Codón sin Sentido/genética , Codón de Terminación/genética , Bases de Datos Genéticas , Código Genético , Humanos , Mutación Missense/genética , Polimorfismo de Nucleótido Simple/genética , Biosíntesis de Proteínas , Mutación Silenciosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA