Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 62(3): 747-758, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36656653

RESUMEN

The main protease of SARS-CoV-2 (Mpro) plays a critical role in viral replication; although it is relatively conserved, Mpro has nevertheless evolved over the course of the COVID-19 pandemic. Here, we examine phenotypic changes in clinically observed variants of Mpro, relative to the originally reported wild-type enzyme. Using atomistic molecular dynamics simulations, we examine effects of mutation on protein structure and dynamics. In addition to basic structural properties such as variation in surface area and torsion angles, we use protein structure networks and active site networks to evaluate functionally relevant characters related to global cohesion and active site constraint. Substitution analysis shows a continuing trend toward more hydrophobic residues that are dependent on the location of the residue in primary, secondary, tertiary, and quaternary structures. Phylogenetic analysis provides additional evidence for the impact of selective pressure on mutation of Mpro. Overall, these analyses suggest evolutionary adaptation of Mpro toward more hydrophobicity and a less-constrained active site in response to the selective pressures of a novel host environment.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , Evolución Molecular , SARS-CoV-2 , Humanos , Antivirales/farmacología , COVID-19/genética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Filogenia , Inhibidores de Proteasas/química , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Proteasas 3C de Coronavirus/genética
2.
Biochemistry ; 59(39): 3741-3756, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32931703

RESUMEN

The SARS-CoV-2 main protease (Mpro) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant neutral drift and selection pressure, with new Mpro mutations arising over time. Identification and structural characterization of Mpro variants is thus critical for robust inhibitor design. Here we report sequence analysis, structure predictions, and molecular modeling for seventy-nine Mpro variants, constituting all clinically observed mutations in this protein as of April 29, 2020. Residue substitution is widely distributed, with some tendency toward larger and more hydrophobic residues. Modeling and protein structure network analysis suggest differences in cohesion and active site flexibility, revealing patterns in viral evolution that have relevance for drug discovery.


Asunto(s)
Betacoronavirus/enzimología , Betacoronavirus/genética , Modelos Moleculares , Mutación , Proteínas no Estructurales Virales/genética , Dominio Catalítico , Descubrimiento de Drogas , Evolución Molecular , Humanos , Estructura Molecular , Filogenia , Inhibidores de Proteasas/química , SARS-CoV-2 , Análisis de Secuencia de Proteína , Proteínas no Estructurales Virales/antagonistas & inhibidores
3.
Biomolecules ; 13(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36830697

RESUMEN

Understanding the molecular adaptations of organisms to extreme environments requires a comparative analysis of protein structure, function, and dynamics across species found in different environmental conditions. Computational studies can be particularly useful in this pursuit, allowing exploratory studies of large numbers of proteins under different thermal and chemical conditions that would be infeasible to carry out experimentally. Here, we perform such a study of the MEROPS family S11, S12, and S13 proteases from psychophilic, mesophilic, and thermophilic bacteria. Using a combination of protein structure prediction, atomistic molecular dynamics, and trajectory analysis, we examine both conserved features and trends across thermal groups. Our findings suggest a number of hypotheses for experimental investigation.


Asunto(s)
Extremófilos , Proteínas/metabolismo , Carboxipeptidasas/metabolismo , Adaptación Fisiológica
4.
J Phys Chem B ; 127(3): 685-697, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36637342

RESUMEN

Network Hamiltonian models (NHMs) are a framework for topological coarse-graining of protein-protein interactions, in which each node corresponds to a protein, and edges are drawn between nodes representing proteins that are noncovalently bound. Here, this framework is applied to aggregates of γD-crystallin, a structural protein of the eye lens implicated in cataract disease. The NHMs in this study are generated from atomistic simulations of equilibrium distributions of wild-type and the cataract-causing variant W42R in solution, performed by Wong, E. K.; Prytkova, V.; Freites, J. A.; Butts, C. T.; Tobias, D. J. Molecular Mechanism of Aggregation of the Cataract-Related γD-Crystallin W42R Variant from Multiscale Atomistic Simulations. Biochemistry2019, 58 (35), 3691-3699. Network models are shown to successfully reproduce the aggregate size and structure observed in the atomistic simulation, and provide information about the transient protein-protein interactions therein. The system size is scaled from the original 375 monomers to a system of 10000 monomers, revealing a lowering of the upper tail of the aggregate size distribution of the W42R variant. Extrapolation to higher and lower concentrations is also performed. These results provide an example of the utility of NHMs for coarse-grained simulation of protein systems, as well as their ability to scale to large system sizes and high concentrations, reducing computational costs while retaining topological information about the system.


Asunto(s)
Catarata , Proteínas Intrínsecamente Desordenadas , Cristalino , gamma-Cristalinas , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Agregado de Proteínas , gamma-Cristalinas/química , Catarata/metabolismo , Cristalino/metabolismo
5.
Biomolecules ; 11(12)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34944432

RESUMEN

Coarse-graining is a powerful tool for extending the reach of dynamic models of proteins and other biological macromolecules. Topological coarse-graining, in which biomolecules or sets thereof are represented via graph structures, is a particularly useful way of obtaining highly compressed representations of molecular structures, and simulations operating via such representations can achieve substantial computational savings. A drawback of coarse-graining, however, is the loss of atomistic detail-an effect that is especially acute for topological representations such as protein structure networks (PSNs). Here, we introduce an approach based on a combination of machine learning and physically-guided refinement for inferring atomic coordinates from PSNs. This "neural upscaling" procedure exploits the constraints implied by PSNs on possible configurations, as well as differences in the likelihood of observing different configurations with the same PSN. Using a 1 µs atomistic molecular dynamics trajectory of Aß1-40, we show that neural upscaling is able to effectively recapitulate detailed structural information for intrinsically disordered proteins, being particularly successful in recovering features such as transient secondary structure. These results suggest that scalable network-based models for protein structure and dynamics may be used in settings where atomistic detail is desired, with upscaling employed to impute atomic coordinates from PSNs.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Aprendizaje Automático , Modelos Moleculares , Simulación de Dinámica Molecular , Redes Neurales de la Computación , Termodinámica
6.
Eur J Med Chem ; 221: 113530, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34023738

RESUMEN

This paper presents the design and study of a first-in-class cyclic peptide inhibitor against the SARS-CoV-2 main protease (Mpro). The cyclic peptide inhibitor is designed to mimic the conformation of a substrate at a C-terminal autolytic cleavage site of Mpro. The cyclic peptide contains a [4-(2-aminoethyl)phenyl]-acetic acid (AEPA) linker that is designed to enforce a conformation that mimics a peptide substrate of Mpro. In vitro evaluation of the cyclic peptide inhibitor reveals that the inhibitor exhibits modest activity against Mpro and does not appear to be cleaved by the enzyme. Conformational searching predicts that the cyclic peptide inhibitor is fairly rigid, adopting a favorable conformation for binding to the active site of Mpro. Computational docking to the SARS-CoV-2 Mpro suggests that the cyclic peptide inhibitor can bind the active site of Mpro in the predicted manner. Molecular dynamics simulations provide further insights into how the cyclic peptide inhibitor may bind the active site of Mpro. Although the activity of the cyclic peptide inhibitor is modest, its design and study lays the groundwork for the development of additional cyclic peptide inhibitors against Mpro with improved activities.


Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Inhibidores de Proteasas/farmacología , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Diseño de Fármacos , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptidos Cíclicos/síntesis química , Inhibidores de Proteasas/química , Inhibidores de Proteasas/toxicidad , Conformación Proteica
7.
bioRxiv ; 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32511408

RESUMEN

The SARS-CoV-2 main protease (M pro ) is essential to viral replication and cleaves highly specific substrate sequences, making it an obvious target for inhibitor design. However, as for any virus, SARS-CoV-2 is subject to constant selection pressure, with new M pro mutations arising over time. Identification and structural characterization of M pro variants is thus critical for robust inhibitor design. Here we report sequence analysis, structure predictions, and molecular modeling for seventy-nine M pro variants, constituting all clinically observed mutations in this protein as of April 29, 2020. Residue substitution is widely distributed, with some tendency toward larger and more hydrophobic residues. Modeling and protein structure network analysis suggest differences in cohesion and active site flexibility, revealing patterns in viral evolution that have relevance for drug discovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA