Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Glia ; 71(3): 682-703, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36401581

RESUMEN

Astrocytes exhibit regional heterogeneity in morphology, function and molecular composition to support and modulate neuronal function and signaling in a region-specific manner. To characterize regional heterogeneity of astrocytic proteomes of different brain regions we established an inducible Aldh1l1-methionyl-tRNA-synthetaseL274G (MetRSL274G ) mouse line that allows astrocyte-specific metabolic labeling of newly synthesized proteins by azidonorleucine (ANL) in vivo and subsequent isolation of tagged proteins by click chemistry. We analyzed astrocytic proteins from four different brain regions by mass spectrometry. The induced expression of MetRSL274G is restricted to astrocytes and identified proteins show a high overlap with proteins compiled in "AstroProt," a newly established database for astrocytic proteins. Gene enrichment analysis reveals a high similarity among brain regions with subtle differences in enriched biological processes and in abundances of key astrocytic proteins for hippocampus, cortex and striatum. However, the cerebellar proteome stands out with proteins being highly associated with the calcium signaling pathway or with bipolar disorder. Subregional analysis of single astrocyte TAMRA intensities in hippocampal layers indicates distinct subregional heterogeneity of astrocytes and highlights the applicability of our toolbox to study differences of astrocytic proteomes in vivo.


Asunto(s)
Astrocitos , Metionina-ARNt Ligasa , Ratones , Animales , Astrocitos/metabolismo , Proteoma/genética , Proteómica/métodos , Metionina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/metabolismo , Hipocampo/metabolismo
2.
Eur J Immunol ; 51(2): 342-353, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33169379

RESUMEN

The immunological synapse is a transient junction that occurs when the plasma membrane of a T cell comes in close contact with an APC after recognizing a peptide from the antigen-MHC. The interaction starts when CRAC channels embedded in the T cell membrane open, flowing calcium ions into the cell. To counterbalance the ion influx and subsequent depolarization, Kv 1.3 and KCa3.1 channels are recruited to the immunological synapse, increasing the extracellular K+ concentration. These processes are crucial as they initiate gene expression that drives T cell activation and proliferation. The T cell-specific function of the K2P channel family member TASK2 channels and their role in autoimmune processes remains unclear. Using mass spectrometry analysis together with epifluorescence and super-resolution single-molecule localization microscopy, we identified TASK2 channels as novel players recruited to the immunological synapse upon stimulation. TASK2 localizes at the immunological synapse, upon stimulation with CD3 antibodies, likely interacting with these molecules. Our findings suggest that, together with Kv 1.3 and KCa3.1 channels, TASK2 channels contribute to the proper functioning of the immunological synapse, and represent an interesting treatment target for T cell-mediated autoimmune disorders.


Asunto(s)
Sinapsis Inmunológicas/inmunología , Canales de Potasio de Dominio Poro en Tándem/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Complejo CD3/inmunología , Calcio/inmunología , Línea Celular Tumoral , Membrana Celular/inmunología , Células Cultivadas , Femenino , Expresión Génica/inmunología , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/inmunología , Células Jurkat , Canal de Potasio Kv1.3/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Linfocitos T/inmunología
3.
Traffic ; 18(1): 29-43, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27743426

RESUMEN

K2P 5.1 channels (also called TASK-2 or Kcnk5) have already been shown to be relevant in the pathophysiology of autoimmune disease because they are known to be upregulated on peripheral and central T lymphocytes of multiple sclerosis (MS) patients. Moreover, overexpression of K2P 5.1 channels in vitro provokes enhanced T-cell effector functions. However, the molecular mechanisms regulating intracellular K2P 5.1 channel trafficking are unknown so far. Thus, the aim of the study is to elucidate the trafficking of K2P 5.1 channels on T lymphocytes. Using mass spectrometry analysis, we have identified 14-3-3 proteins as novel binding partners of K2P 5.1 channels. We show that a non-classical 14-3-3 consensus motif (R-X-X-pT/S-x) at the channel's C-terminus allows the binding between K2P 5.1 and 14-3-3. The mutant K2P 5.1/S266A diminishes the protein-protein interaction and reduces the amplitude of membrane currents. Application of a non-peptidic 14-3-3 inhibitor (BV02) significantly reduces the number of wild-type channels in the plasma membrane, whereas the drug has no effect on the trafficking of the mutated channel. Furthermore, blocker application reduces T-cell effector functions. Taken together, we demonstrate that 14-3-3 interacts with K2P 5.1 and plays an important role in channel trafficking.


Asunto(s)
Proteínas 14-3-3/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Linfocitos T/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas/fisiología , Regulación hacia Arriba/fisiología
4.
Brain Behav Immun ; 80: 35-43, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30797047

RESUMEN

Proteolysis as mediated by one of the major cellular protein degradation pathways, the ubiquitin-proteasome system (UPS), plays an essential role in learning and memory formation. However, the functional relevance of immunoproteasomes in the healthy brain and especially their impact on normal brain function including processes of learning and memory has not been investigated so far. In the present study, we analyzed the phenotypic effects of an impaired immunoproteasome formation using a ß5i/LMP7-deficient mouse model in different behavioral paradigms focusing on locomotor activity, exploratory behavior, innate anxiety, startle response, prepulse inhibition, as well as fear and safety conditioning. Overall, our results demonstrate no strong effects of constitutive ß5i/LMP7-deficiency on gross locomotor abilities and anxiety-related behavior in general. However, ß5i/LMP7-deficient mice expressed more anxiety after mild stress and increased cued fear after fear conditioning. These findings indicate that the basal proper formation of immunoproteasomes and/or at least the expression of ß5i/LMP7 in healthy mice seem to be involved in the regulation of anxiety and cued fear levels.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/metabolismo , Estrés Psicológico/metabolismo , Animales , Ansiedad/metabolismo , Señales (Psicología) , Modelos Animales de Enfermedad , Miedo/fisiología , Femenino , Masculino , Memoria/fisiología , Ratones , Ratones Noqueados , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/inmunología , Complejo de la Endopetidasa Proteasomal/fisiología , Proteolisis , Reflejo de Sobresalto/fisiología , Estrés Psicológico/inmunología
5.
Mol Cell Proteomics ; 15(2): 368-81, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26307175

RESUMEN

The advances in mass spectrometry based proteomics in the past 15 years have contributed to a deeper appreciation of protein networks and the composition of functional synaptic protein complexes. However, research on protein dynamics underlying core mechanisms of synaptic plasticity in brain lag far behind. In this review, we provide a synopsis on proteomic research addressing various aspects of synaptic function. We discuss the major topics in the study of protein dynamics of the chemical synapse and the limitations of current methodology. We highlight recent developments and the future importance of multidimensional proteomics and metabolic labeling. Finally, emphasis is given on the conceptual framework of modern proteomics and its current shortcomings in the quest to gain a deeper understanding of synaptic plasticity.


Asunto(s)
Espectrometría de Masas/métodos , Plasticidad Neuronal/genética , Proteómica/métodos , Sinapsis/genética , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Proteínas/genética , Proteínas/metabolismo , Sinapsis/metabolismo
6.
J Neurochem ; 138(1): 124-38, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27062398

RESUMEN

Learning and memory processes are accompanied by rearrangements of synaptic protein networks. While various studies have demonstrated the regulation of individual synaptic proteins during these processes, much less is known about the complex regulation of synaptic proteomes. Recently, we reported that auditory discrimination learning in mice is associated with a relative down-regulation of proteins involved in the structural organization of synapses in various brain regions. Aiming at the identification of biological processes and signaling pathways involved in auditory memory formation, here, a label-free quantification approach was utilized to identify regulated synaptic junctional proteins and phosphoproteins in the auditory cortex, frontal cortex, hippocampus, and striatum of mice 24 h after the learning experiment. Twenty proteins, including postsynaptic scaffolds, actin-remodeling proteins, and RNA-binding proteins, were regulated in at least three brain regions pointing to common, cross-regional mechanisms. Most of the detected synaptic proteome changes were, however, restricted to individual brain regions. For example, several members of the Septin family of cytoskeletal proteins were up-regulated only in the hippocampus, while Septin-9 was down-regulated in the hippocampus, the frontal cortex, and the striatum. Meta analyses utilizing several databases were employed to identify underlying cellular functions and biological pathways. Data are available via ProteomeExchange with identifier PXD003089. How does the protein composition of synapses change in different brain areas upon auditory learning? We unravel discrete proteome changes in mouse auditory cortex, frontal cortex, hippocampus, and striatum functionally implicated in the learning process. We identify not only common but also area-specific biological pathways and cellular processes modulated 24 h after training, indicating individual contributions of the regions to memory processing.


Asunto(s)
Estimulación Acústica , Encéfalo/metabolismo , Aprendizaje Discriminativo/fisiología , Regulación de la Expresión Génica/fisiología , Proteoma/metabolismo , Sinapsis/metabolismo , Animales , Vías Auditivas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Masculino , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Fosfoproteínas/metabolismo , Transducción de Señal
7.
Nat Methods ; 10(4): 343-6, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23474466

RESUMEN

Here we demonstrate quantitation of stimuli-induced proteome dynamics in primary cells by combining the power of bio-orthogonal noncanonical amino acid tagging (BONCAT) and stable-isotope labeling of amino acids in cell culture (SILAC). In conjunction with nanoscale liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS), quantitative noncanonical amino acid tagging (QuaNCAT) allowed us to monitor the early expression changes of >600 proteins in primary resting T cells subjected to activation stimuli.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Regulación de la Expresión Génica/fisiología , Proteómica/métodos , Aminoácidos , Linfocitos T CD4-Positivos/efectos de los fármacos , Ionóforos de Calcio/farmacología , Carcinógenos/farmacología , Cromatografía Liquida/métodos , Humanos , Ionomicina/farmacología , Marcaje Isotópico , Ésteres del Forbol/farmacología , Sensibilidad y Especificidad , Espectrometría de Masas en Tándem/métodos
8.
Neurobiol Learn Mem ; 130: 7-16, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26785229

RESUMEN

Taste information is processed in different brain structures in the mammalian brain, including the gustatory cortex (GC), which resides within the insular cortex. N-methyl-d-aspartate receptor (NMDAR) activity in the GC is necessary for the acquisition of conditioned taste aversion (CTA) but not positive novel taste learning. Previous studies have shown that taste memory consolidation requires intact protein synthesis in the GC. In addition, the direct involvement of translation initiation and elongation factors was documented in the GC during taste learning. However, protein expression is defined by protein synthesis, degradation, and localization. Protein degradation is critical for the consolidation and reconsolidation of other forms of learning, such as fear learning and addiction behavior, but its role in cortical-dependent learning is not clear. Here, we show for the first time that proteasome activity is specifically increased in the GC 4h following experiencing of a novel taste. This increase in proteasome activity was abolished by local administration to the GC of the NMDA antagonist, APV, as well as a CaMKII inhibitor, at the time of acquisition. In addition, local application of lactacystin, a proteasome inhibitor, resulted in impaired CTA, but not novel taste learning. These results suggest that NMDAR-dependent proteasome activity in the GC participates in the association process between novel taste experience and negative visceral sensation.


Asunto(s)
Reacción de Prevención/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Somatosensorial/metabolismo , Percepción del Gusto/fisiología , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacología , Animales , Reacción de Prevención/efectos de los fármacos , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Inhibidores de Cisteína Proteinasa/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Masculino , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Corteza Somatosensorial/efectos de los fármacos , Gusto/efectos de los fármacos , Gusto/fisiología , Percepción del Gusto/efectos de los fármacos , Valina/análogos & derivados , Valina/farmacología
9.
Proteome Sci ; 13: 13, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25852303

RESUMEN

BACKGROUND: Using auditory discrimination learning in gerbils, we have previously shown that activation of auditory-cortical D1/D5 dopamine receptors facilitates mTOR-mediated, protein synthesis-dependent mechanisms of memory consolidation and anterograde memory formation. To understand molecular mechanisms of this facilitatory effect, we tested the impact of local pharmacological activation of different D1/D5 dopamine receptor signalling modes in the auditory cortex. To this end, protein patterns in soluble and synaptic protein-enriched fractions from cortical, hippocampal and striatal brain regions of ligand- and vehicle-treated gerbils were analysed by 2D gel electrophoresis and mass spectrometry 24 h after intervention. RESULTS: After auditory-cortical injection of SKF38393 - a D1/D5 dopamine receptor-selective agonist reported to activate the downstream effectors adenylyl cyclase and phospholipase C - prominent proteomic alterations compared to vehicle-treated controls appeared in the auditory cortex, striatum, and hippocampus, whereas only minor changes were detectable in the frontal cortex. In contrast, auditory-cortical injection of SKF83959 - a D1/D5 agonist reported to preferentially stimulate phospholipase C - induced pronounced changes in the frontal cortex. At the molecular level, we detected altered regulation of cytoskeletal and scaffolding proteins, changes in proteins with functions in energy metabolism, local protein synthesis, and synaptic signalling. Interestingly, abundance and/or subcellular localisation of the predominantly presynaptic protein α-synuclein displayed dopaminergic regulation. To assess the role of α-synuclein for dopaminergic mechanisms of memory modulation, we tested the impact of post-conditioning systemic pharmacological activation of different D1/D5 dopamine receptor signalling modes on auditory discrimination learning in α-synuclein-mutant mice. In C57BL/6JOlaHsd mice, bearing a spontaneous deletion of the α-synuclein-encoding gene, but not in the related substrains C57BL/6JCrl and C57BL/6JRccHsd, adenylyl cyclase-mediated signalling affected acquisition rates over future learning episodes, whereas phospholipase C-mediated signalling affected final memory performance. CONCLUSIONS: Dopamine signalling modes via D1/D5 receptors in the auditory cortex differentially impact protein profiles related to rearrangement of cytomatrices, energy metabolism, and synaptic neurotransmission in cortical, hippocampal, and basal brain structures. Altered dopamine neurotransmission in α-synuclein-deficient mice revealed that distinct D1/D5 receptor signalling modes may control different aspects of memory consolidation.

10.
Cell Physiol Biochem ; 34(6): 1912-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25504043

RESUMEN

BACKGROUND/AIMS: The trefoil factor family (TFF) peptide TFF3 is typically secreted by mucous epithelia, but is also expressed in the immune system and the brain. It was the aim of this study to determine the cerebral cell types which express Tff3. METHODS: Primary cultures from rat embryonic or neonatal cerebral cortex and hippocampus, respectively, were studied by means of RT-PCR and immunofluorescence. Moreover, Tff3 expression was localized by immunocytochemistry in sections of adult rat cerebellum. RESULTS: Tff3 transcripts were detectable in neural cultures of both the cortex and the hippocampus as well as in glial cell-enriched cultures. Tff3 peptide co-localized with Map2 indicating an expression in neurons in vitro. The neuronal expression was confirmed by immunofluorescence studies of adult rat cerebellum. Furthermore, Tff3 peptide showed also a clear co-localization with Iba-1 in vitro typical of activated microglial cells. CONCLUSION: The neuronal expression of Tff3 is in line with a function of a typical neuropeptide influencing, e.g., fear, memory, depression and motoric skills. The expression in activated microglial cells, which is demonstrated here for the first time, points towards a possible function for Tff3 in immune reactions in the CNS. This opens a plethora of additional possible functions for Tff3 including synaptic plasticity and cognition as well as during neuroinflammatory diseases and psychiatric disorders.


Asunto(s)
Corteza Cerebral/metabolismo , Regulación de la Expresión Génica , Neuronas/metabolismo , Neuropéptidos/biosíntesis , Animales , Hipocampo/metabolismo , Microglía/metabolismo , Neuropéptidos/metabolismo , Ratas , Factor Trefoil-3
11.
Artículo en Inglés | MEDLINE | ID: mdl-38849086

RESUMEN

Neurodevelopmental disorders such as autism spectrum disorder (ASD) have a heterogeneous etiology but are largely associated with genetic factors. Robust evidence from recent human genetic studies has linked mutations in the Shank2 gene to idiopathic ASD. Modeling these Shank2 mutations in animal models recapitulates behavioral changes, e.g. impaired social interaction and repetitive behavior of ASD patients. Shank2-deficient mice exhibit NMDA receptor (NMDAR) hypofunction and associated behavioral deficits. Of note, NMDARs are strongly implicated in cognitive flexibility. Their hypofunction, e.g. observed in schizophrenia, or their pharmacological inhibition leads to impaired cognitive flexibility. However, the association between Shank2 mutations and cognitive flexibility is poorly understood. Using Shank2-deficient mice, we explored the role of Shank2 in cognitive flexibility measured by the attentional set shifting task (ASST) and whether ASST performance in Shank2-deficient mice can be modulated by treatment with the partial NMDAR agonist D-cycloserine (DCS). Furthermore, we investigated the effects of Shank2 deficiency, ASST training, and DCS treatment on the expression level of NMDAR signaling hub components in the orbitofrontal cortex (OFC), including NMDAR subunits (GluN2A, GluN2B, GluN2C), phosphoglycerate dehydrogenase and serine racemase. Surprisingly, Shank2 deficiency did not affect ASST performance or alter the expression of the investigated NMDAR signaling hub components. Importantly, however, DCS significantly improved ASST performance, demonstrating that positive NMDAR modulation facilitates cognitive flexibility. Furthermore, DCS increased the expression of GluN2A in the OFC, but not that of other NMDAR signaling hub components. Our findings highlight the potential of DCS as a pharmacological intervention to improve cognitive flexibility impairments downstream of NMDAR modulation and substantiate the key role of NMDAR in cognitive flexibility.

12.
Cells ; 12(9)2023 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-37174612

RESUMEN

Cognitive flexibility refers to the ability to adapt flexibly to changing circumstances. In laboratory mice, we investigated whether cognitive flexibility is higher in pubertal mice than in adult mice, and whether this difference is related to the expression of distinct NMDA receptor subunits. Using the attentional set shifting task as a measure of cognitive flexibility, we found that cognitive flexibility was increased during puberty. This difference was more pronounced in female pubertal mice. Further, the GluN2A subunit of the NMDA receptor was more expressed during puberty than after puberty. Pharmacological blockade of GluN2A reduced the cognitive flexibility of pubertal mice to adult levels. In adult mice, the expression of GluN2A, GluN2B, and GluN2C in the orbitofrontal cortex correlated positively with performance in the attentional set shifting task, whereas in pubertal mice this was only the case for GluN2C. In conclusion, the present study confirms the observation in humans that cognitive flexibility is higher during puberty than in adulthood. Future studies should investigate whether NMDA receptor subunit-specific agonists are able to rescue deficient cognitive flexibility, and whether they have the potential to be used in human diseases with deficits in cognitive flexibility.


Asunto(s)
Corteza Prefrontal , Receptores de N-Metil-D-Aspartato , Ratones , Humanos , Femenino , Animales , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Prefrontal/metabolismo , Atención , Cognición , Pubertad
13.
Mycotoxin Res ; 39(3): 219-231, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37256505

RESUMEN

Deoxynivalenol is present in forage crops in concentrations that endanger animal welfare but is also found in cereal-based food. The amphipathic nature of mycotoxins allows them to cross the cell membrane and interacts with different cell organelles such as mitochondria and ribosomes. In our study, we investigated the gene expression of several genes in vivo and in vitro that are related to the metabolism. We observed a significantly higher COX5B and MHCII expression in enterocytes of DON-fed pigs compared to CON-fed pigs and a marked increase in GAPDH and SLC7A11 in DON-fed pigs, but we could not confirm this in vitro in IPEC-1. In vitro, functional metabolic analyses were performed with a seahorse analyzer. A significant increase of non-mitochondrial respiration was observed in all DON-treatment groups (50-2000 ng/mL). The oxygen consumption of cells, which were cultured on membranes, was examined with a fiber-glass electrode. Here, we found significantly lower values for DON 200- and DON 2000-treatment group. The effect on ribosomes was investigated using biorthogonal non-canonical amino acid tagging (BONCAT) to tag newly synthesized proteins. A significantly reduced amount was found in almost all DON-treatment groups. Our findings clearly show that apical and basolateral DON-treatment of epithelial cell layer results in decreasing amounts of newly synthesized proteins. Furthermore, our study shows that DON affects enterocyte metabolism in vivo and in vitro.


Asunto(s)
Micotoxinas , Tricotecenos , Porcinos , Animales , Línea Celular , Tricotecenos/farmacología , Micotoxinas/metabolismo , Células Epiteliales
14.
Nat Commun ; 14(1): 2642, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156840

RESUMEN

Cell-selective proteomics is a powerful emerging concept to study heterocellular processes in tissues. However, its high potential to identify non-cell-autonomous disease mechanisms and biomarkers has been hindered by low proteome coverage. Here, we address this limitation and devise a comprehensive azidonorleucine labeling, click chemistry enrichment, and mass spectrometry-based proteomics and secretomics strategy to dissect aberrant signals in pancreatic ductal adenocarcinoma (PDAC). Our in-depth co-culture and in vivo analyses cover more than 10,000 cancer cell-derived proteins and reveal systematic differences between molecular PDAC subtypes. Secreted proteins, such as chemokines and EMT-promoting matrisome proteins, associated with distinct macrophage polarization and tumor stromal composition, differentiate classical and mesenchymal PDAC. Intriguingly, more than 1,600 cancer cell-derived proteins including cytokines and pre-metastatic niche formation-associated factors in mouse serum reflect tumor activity in circulation. Our findings highlight how cell-selective proteomics can accelerate the discovery of diagnostic markers and therapeutic targets in cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Ratones , Proteómica , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patología , Proteoma/metabolismo , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas
15.
Proteomics ; 12(15-16): 2464-76, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22744909

RESUMEN

Local protein synthesis and its activity-dependent modulation via dopamine receptor stimulation play an important role in synaptic plasticity - allowing synapses to respond dynamically to changes in their activity patterns. We describe here the metabolic labeling, enrichment, and MS-based identification of candidate proteins specifically translated in intact hippocampal neuropil sections upon treatment with the selective D1/D5 receptor agonist SKF81297. Using the noncanonical amino acid azidohomoalanine and click chemistry, we identified over 300 newly synthesized proteins specific to dendrites and axons. Candidates specific for the SKF81297-treated samples were predominantly involved in protein synthesis and synapse-specific functions. Furthermore, we demonstrate a dendrite-specific increase in proteins synthesis upon application of SKF81297. This study provides the first snapshot in the dynamics of the dopaminergic hippocampal neuropil proteome.


Asunto(s)
Aminoácidos/metabolismo , Dopamina/metabolismo , Hipocampo/metabolismo , Neurópilo/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Animales , Benzazepinas/farmacología , Western Blotting , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Agonistas de Dopamina/farmacología , Hipocampo/efectos de los fármacos , Masculino , Microdisección , Neurópilo/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos
16.
Nat Chem Biol ; 5(10): 715-7, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19668194

RESUMEN

Metabolic labeling of proteins with the methionine surrogate azidonorleucine can be targeted exclusively to specified cells through expression of a mutant methionyl-tRNA synthetase (MetRS). In complex cellular mixtures, proteins made in cells that express the mutant synthetase can be tagged with affinity reagents (for detection or enrichment) or fluorescent dyes (for imaging). Proteins made in cells that do not express the mutant synthetase are neither labeled nor detected.


Asunto(s)
Marcadores de Afinidad/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Metionina-ARNt Ligasa/metabolismo , Proteínas/metabolismo , Alanina/análogos & derivados , Alanina/metabolismo , Aminoacil-ARNt Sintetasas/genética , Animales , Línea Celular , Técnicas de Cocultivo , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Metionina-ARNt Ligasa/genética , Ratones , Mutagénesis Sitio-Dirigida , Mutación , Norleucina/análogos & derivados , Norleucina/metabolismo , Biosíntesis de Proteínas
17.
PLoS Biol ; 6(2): e34, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18303947

RESUMEN

NMDA (N-methyl-D-aspartate) receptors and calcium can exert multiple and very divergent effects within neuronal cells, thereby impacting opposing occurrences such as synaptic plasticity and neuronal degeneration. The neuronal Ca2+ sensor Caldendrin is a postsynaptic density component with high similarity to calmodulin. Jacob, a recently identified Caldendrin binding partner, is a novel protein abundantly expressed in limbic brain and cerebral cortex. Strictly depending upon activation of NMDA-type glutamate receptors, Jacob is recruited to neuronal nuclei, resulting in a rapid stripping of synaptic contacts and in a drastically altered morphology of the dendritic tree. Jacob's nuclear trafficking from distal dendrites crucially requires the classical Importin pathway. Caldendrin binds to Jacob's nuclear localization signal in a Ca2+-dependent manner, thereby controlling Jacob's extranuclear localization by competing with the binding of Importin-alpha to Jacob's nuclear localization signal. This competition requires sustained synapto-dendritic Ca2+ levels, which presumably cannot be achieved by activation of extrasynaptic NMDA receptors, but are confined to Ca2+ microdomains such as postsynaptic spines. Extrasynaptic NMDA receptors, as opposed to their synaptic counterparts, trigger the cAMP response element-binding protein (CREB) shut-off pathway, and cell death. We found that nuclear knockdown of Jacob prevents CREB shut-off after extrasynaptic NMDA receptor activation, whereas its nuclear overexpression induces CREB shut-off without NMDA receptor stimulation. Importantly, nuclear knockdown of Jacob attenuates NMDA-induced loss of synaptic contacts, and neuronal degeneration. This defines a novel mechanism of synapse-to-nucleus communication via a synaptic Ca2+-sensor protein, which links the activity of NMDA receptors to nuclear signalling events involved in modelling synapto-dendritic input and NMDA receptor-induced cellular degeneration.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Núcleo Celular/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal , Animales , Secuencia de Bases , Western Blotting , Proteínas de Unión al Calcio/genética , Cromatografía de Afinidad , Cartilla de ADN , ADN Complementario , Inmunohistoquímica , Señales de Localización Nuclear , Unión Proteica , Ratas , Técnicas del Sistema de Dos Híbridos
18.
Cells ; 10(2)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33530478

RESUMEN

Relief learning is the association of environmental cues with the cessation of aversive events. While there is increasing knowledge about the neural circuitry mediating relief learning, the respective molecular pathways are not known. Therefore, the aim of the present study was to examine different putative molecular pathways underlying relief learning. To this purpose, male rats were subjected either to relief conditioning or to a pseudo conditioning procedure. Forty-five minutes or 6 h after conditioning, samples of five different brain regions, namely the prefrontal cortex, nucleus accumbens (NAC), dorsal striatum, dorsal hippocampus, and amygdala, were collected. Using quantitative Western blots, the expression level of CREB, pCREB, ERK1/2, pERK1/2, CaMKIIα, MAP2K, PKA, pPKA, Akt, pAkt, DARPP-32, pDARPP-32, 14-3-3, and neuroligin2 were studied. Our analyses revealed that relief conditioned rats had higher CREB phosphorylation in NAC 6 h after conditioning than pseudo conditioned rats. The data further revealed that this CREB phosphorylation was mainly induced by dopamine D1 receptor-mediated activation of PKA, however, other kinases, downstream of the NMDA receptor, may also contribute. Taken together, the present study suggests that CREB phosphorylation, induced by a combination of different molecular pathways downstream of dopamine D1 and NMDA receptors, is essential for the acquisition and consolidation of relief learning.


Asunto(s)
Condicionamiento Clásico , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Núcleo Accumbens/metabolismo , Proteínas 14-3-3/metabolismo , Animales , Conducta Animal , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Masculino , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal
19.
mBio ; 12(5): e0177621, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34700379

RESUMEN

Influenza A virus (IAV) causes respiratory tract disease and is responsible for seasonal and reoccurring epidemics affecting all age groups. Next to typical disease symptoms, such as fever and fatigue, IAV infection has been associated with behavioral alterations presumably contributing to the development of major depression. Previous experiments using IAV/H1N1 infection models have shown impaired hippocampal neuronal morphology and cognitive abilities, but the underlying pathways have not been fully described. In this study, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes ample peripheral immune response followed by a temporary blood-brain barrier disturbance. Although histological examination did not reveal obvious pathological processes in the brains of IAV-infected mice, detailed multidimensional flow cytometric characterization of immune cells uncovered subtle alterations in the activation status of microglial cells. More specifically, we detected an altered expression pattern of major histocompatibility complex classes I and II, CD80, and F4/80 accompanied by elevated mRNA levels of CD36, CD68, C1QA, and C3, suggesting evolved synaptic pruning. To closer evaluate how these profound changes affect synaptic balance, we established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry. The introduction of this novel technique enabled us to simultaneously quantify the abundance of pre- and postsynapses from distinct brain regions. Our data reveal a significant reduction of VGLUT1 in excitatory presynaptic terminals in the cortex and hippocampus, identifying a subtle dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations. IMPORTANCE Influenza A virus (IAV) causes mainly respiratory tract disease with fever and fatigue but is also associated with behavioral alterations in humans. Here, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes peripheral immune response followed by a temporary blood-brain barrier disturbance. Characterization of immune cells uncovered subtle alterations in the activation status of microglia cells that might reshape neuronal synapses. We established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry to more closely study the synapses. Thus, we detected a specific dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations.


Asunto(s)
Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Virus de la Influenza A , Microglía/metabolismo , Transmisión Sináptica/fisiología , Animales , Encéfalo/patología , Quimiocinas , Citocinas , Expresión Génica , Humanos , Inflamación/virología , Virus de la Influenza A/genética , Gripe Humana/virología , Ratones , Infecciones por Orthomyxoviridae/virología
20.
Front Immunol ; 12: 619465, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968021

RESUMEN

Cell survival and function critically relies on the fine-tuned balance of protein synthesis and degradation. In the steady state, the standard proteasome is sufficient to maintain this proteostasis. However, upon inflammation, the sharp increase in protein production requires additional mechanisms to limit protein-associated cellular stress. Under inflammatory conditions and the release of interferons, the immunoproteasome (IP) is induced to support protein processing and recycling. In antigen-presenting cells constitutively expressing IPs, inflammation-related mechanisms contribute to the formation of MHC class I/II-peptide complexes, which are required for the induction of T cell responses. The control of Toxoplasma gondii infection relies on Interferon-γ (IFNγ)-related T cell responses. Whether and how the IP affects the course of anti-parasitic T cell responses along the infection as well as inflammation of the central nervous system is still unknown. To answer this question we used triple knockout (TKO) mice lacking the 3 catalytic subunits of the immunoproteasome (ß1i/LMP2, ß2i/MECL-1 and ß5i/LMP7). Here we show that the numbers of dendritic cells, monocytes and CD8+ T cells were reduced in Toxoplasma gondii-infected TKO mice. Furthermore, impaired IFNγ, TNF and iNOS production was accompanied by dysregulated chemokine expression and altered immune cell recruitment to the brain. T cell differentiation was altered, apoptosis rates of microglia and monocytes were elevated and STAT3 downstream signaling was diminished. Consequently, anti-parasitic immune responses were impaired in TKO mice leading to elevated T. gondii burden and prolonged neuroinflammation. In summary we provide evidence for a critical role of the IP subunits ß1i/LMP2, ß2i/MECL-1 and ß5i/LMP7 for the control of cerebral Toxoplasma gondii infection and subsequent neuroinflammation.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Inmunomodulación , Complejo de la Endopetidasa Proteasomal/metabolismo , Toxoplasmosis Cerebral/etiología , Toxoplasmosis Cerebral/metabolismo , Animales , Apoptosis , Biomarcadores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Ratones , Transducción de Señal , Toxoplasma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA