Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 47(D1): D1146-D1154, 2019 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-30407532

RESUMEN

Since its 2015 update, MaizeGDB, the Maize Genetics and Genomics database, has expanded to support the sequenced genomes of many maize inbred lines in addition to the B73 reference genome assembly. Curation and development efforts have targeted high quality datasets and tools to support maize trait analysis, germplasm analysis, genetic studies, and breeding. MaizeGDB hosts a wide range of data including recent support of new data types including genome metadata, RNA-seq, proteomics, synteny, and large-scale diversity. To improve access and visualization of data types several new tools have been implemented to: access large-scale maize diversity data (SNPversity), download and compare gene expression data (qTeller), visualize pedigree data (Pedigree Viewer), link genes with phenotype images (MaizeDIG), and enable flexible user-specified queries to the MaizeGDB database (MaizeMine). MaizeGDB also continues to be the community hub for maize research, coordinating activities and providing technical support to the maize research community. Here we report the changes MaizeGDB has made within the last three years to keep pace with recent software and research advances, as well as the pan-genomic landscape that cheaper and better sequencing technologies have made possible. MaizeGDB is accessible online at https://www.maizegdb.org.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Genoma de Planta/genética , Genómica/métodos , Zea mays/genética , Regulación de la Expresión Génica de las Plantas , Variación Genética , Almacenamiento y Recuperación de la Información/métodos , Internet , Polimorfismo de Nucleótido Simple , Proteómica/métodos , Interfaz Usuario-Computador , Zea mays/metabolismo
2.
Dis Model Mech ; 17(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38214058

RESUMEN

In the past decade, Zika virus (ZIKV) emerged as a global public health concern. Although adult infections are typically mild, maternal infection can lead to adverse fetal outcomes. Understanding how ZIKV proteins disrupt development can provide insights into the molecular mechanisms of disease caused by this virus, which includes microcephaly. In this study, we generated a toolkit to ectopically express ZIKV proteins in vivo in Drosophila melanogaster in a tissue-specific manner using the GAL4/UAS system. We used this toolkit to identify phenotypes and potential host pathways targeted by the virus. Our work identified that expression of most ZIKV proteins caused scorable phenotypes, such as overall lethality, gross morphological defects, reduced brain size and neuronal function defects. We further used this system to identify strain-dependent phenotypes that may have contributed to the increased pathogenesis associated with the outbreak of ZIKV in the Americas in 2015. Our work demonstrates the use of Drosophila as an efficient in vivo model to rapidly decipher how pathogens cause disease and lays the groundwork for further molecular study of ZIKV pathogenesis in flies.


Asunto(s)
Microcefalia , Infección por el Virus Zika , Virus Zika , Animales , Virus Zika/metabolismo , Drosophila , Drosophila melanogaster , Microcefalia/epidemiología , Microcefalia/etiología
3.
bioRxiv ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39211166

RESUMEN

Loss of function mutations in the X-linked PIGA gene lead to PIGA-CDG, an ultra-rare congenital disorder of glycosylation (CDG), typically presenting with seizures, hypotonia, and neurodevelopmental delay. We identified two brothers (probands) with PIGA-CDG, presenting with epilepsy and mild developmental delay. Both probands carry PIGA S132C , an ultra-rare variant predicted to be damaging. Strikingly, the maternal grandfather and a great-uncle also carry PIGA S132C , but neither presents with symptoms associated with PIGA-CDG. We hypothesized genetic modifiers may contribute to this reduced penetrance. Using whole genome sequencing and pedigree analysis, we identified possible susceptibility variants found in the probands and not in carriers and possible protective variants found in the carriers and not in the probands. Candidate variants included heterozygous, damaging variants in three genes also involved directly in GPI-anchor biosynthesis and a few genes involved in other glycosylation pathways or encoding GPI-anchored proteins. We functionally tested the predicted modifiers using a Drosophila eye-based model of PIGA-CDG. We found that loss of CNTN2 , a predicted protective modifier, rescues loss of PIGA in Drosophila eye-based model, like what we predict in the family. Further testing found that loss of CNTN2 also rescues patient-relevant phenotypes, including seizures and climbing defects in Drosophila neurological models of PIGA-CDG. By using pedigree information, genome sequencing, and in vivo testing, we identified CNTN2 as a strong candidate modifier that could explain the incomplete penetrance in this family. Identifying and studying rare disease modifier genes in human pedigrees may lead to pathways and targets that may be developed into therapies.

4.
bioRxiv ; 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37163061

RESUMEN

In the past decade, Zika virus (ZIKV) emerged as a global public health concern. While adult infections are typically mild, maternal infection can lead to adverse fetal outcomes. Understanding how ZIKV proteins disrupt development can provide insights into the molecular mechanisms of symptoms caused by this virus including microcephaly. In this study, we generated a toolkit to ectopically express Zika viral proteins in vivo in Drosophila melanogaster in a tissue-specific manner using the GAL4/UAS system. We use this toolkit to identify phenotypes and host pathways targeted by the virus. Our work identified that expression of most ZIKV proteins cause scorable phenotypes, such as overall lethality, gross morphological defects, reduced brain size, and neuronal function defects. We further use this system to identify strain-dependent phenotypes that may contribute to the increased pathogenesis associated with the more recent outbreak of ZIKV in the Americas. Our work demonstrates Drosophila's use as an efficient in vivo model to rapidly decipher how pathogens cause disease and lays the groundwork for further molecular study of ZIKV pathogenesis in flies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA