Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834737

RESUMEN

Poly(lactide) (PLA) and poly(ethylene glycol) (PEG)-based hydrogels were prepared by mixing phosphate buffer saline (PBS, pH 7.4) solutions of four-arm (PEG-PLA)2-R-(PLA-PEG)2 enantiomerically pure copolymers having the opposite chirality of the poly(lactide) blocks. Dynamic Light Scattering, rheology measurements, and fluorescence spectroscopy suggested that, depending on the nature of the linker R, the gelation process followed rather different mechanisms. In all cases, mixing of equimolar amounts of the enantiomeric copolymers led to micellar aggregates with a stereocomplexed PLA core and a hydrophilic PEG corona. Yet, when R was an aliphatic heptamethylene unit, temperature-dependent reversible gelation was mainly induced by entanglements of PEG chains at concentrations higher than 5 wt.%. When R was a linker containing cationic amine groups, thermo-irreversible hydrogels were promptly generated at concentrations higher than 20 wt.%. In the latter case, stereocomplexation of the PLA blocks randomly distributed in micellar aggregates is proposed as the major determinant of the gelation process.


Asunto(s)
Polietilenglicoles , Polímeros , Polímeros/química , Polietilenglicoles/química , Poliésteres/química , Micelas , Hidrogeles/química
2.
Am J Physiol Cell Physiol ; 323(2): C606-C616, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35785986

RESUMEN

The impact of aerobic training on human skeletal muscle cell (HSkMC) mitochondrial metabolism is a significant research gap, critical to understanding the mechanisms by which exercise augments skeletal muscle metabolism. We therefore assessed mitochondrial content and capacity in fully differentiated CD56+ HSkMCs from lean active (LA) and sedentary individuals with obesity (OS) at baseline, as well as lean/overweight sedentary individuals (LOS) at baseline and following an 18-day aerobic training intervention. Participants had in vivo skeletal muscle PCr recovery rate by 31P-MRS (mitochondrial oxidative kinetics) and cardiorespiratory fitness (V̇o2max) assessed at baseline. Biopsies of the vastus lateralis were performed for the isolation of skeletal muscle stem cells. LOS individuals repeated all assessments posttraining. HSkMCs were evaluated for mitochondrial respiratory capacity by high-resolution respirometry. Data were normalized to two indices of mitochondrial content (CS activity and OXPHOS protein expression) and a marker of total cell count (quantity of DNA). LA individuals had significantly higher V̇o2max than OS and LOS-Pre training; however, no differences were observed in skeletal muscle mitochondrial capacity, nor in carbohydrate- or fatty acid-supported HSkMC respiratory capacity. Aerobic training robustly increased in vivo skeletal muscle mitochondrial capacity of LOS individuals, as well as carbohydrate-supported HSkMC respiratory capacity. Indices of mitochondrial content and total cell count were similar among the groups and did not change with aerobic training. Our findings demonstrate that bioenergetic changes induced with aerobic training in skeletal muscle in vivo are retained in HSkMCs in vitro without impacting mitochondrial content, suggesting that training improves intrinsic skeletal muscle mitochondrial capacity.


Asunto(s)
Mitocondrias Musculares , Músculo Esquelético , Carbohidratos , Ejercicio Físico/fisiología , Humanos , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Células Madre
3.
Biomacromolecules ; 21(6): 2208-2217, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32243138

RESUMEN

Supramolecular and dynamic biomaterials hold promise to recapitulate the time-dependent properties and stimuli-responsiveness of the native extracellular matrix (ECM). Host-guest chemistry is one of the most widely studied supramolecular bonds, yet the binding characteristics of host-guest complexes (ß-CD/adamantane) in relevant biomaterials have mostly focused on singular host-guest interactions or nondiscrete multivalent pendent polymers. The stepwise synergistic effect of multivalent host-guest interactions for the formation of dynamic biomaterials remains relatively unreported. In this work, we study how a series of multivalent adamantane (guest) cross-linkers affect the overall binding affinity and ability to form supramolecular networks with alginate-CD (Alg-CD). These binding constants of the multivalent cross-linkers were determined via NMR titrations and showed increases in binding constants occurring with multivalent constructs. The higher multivalent cross-linkers enabled hydrogel formation; furthermore, an increase in binding and gelation was observed with the inclusion of a phenyl spacer to the cross-linker. A preliminary screen shows that only cross-linking Alg-CD with an 8-arm-multivalent guest results in robust gel formation. These cytocompatible hydrogels highlight the importance of multivalent design for dynamically cross-linked hydrogels. These materials hold promise for development toward cell- and small molecule-delivery platforms and allow discrete and fine-tuning of network properties.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Alginatos , Polímeros
4.
Soft Matter ; 10(37): 7328-36, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25088281

RESUMEN

Metallo supramolecular assemblies of an 8-arm poly(ethylene glycol) partially substituted with terpyridyl end-groups and the transition metal ions Ni(2+), Fe(2+), Co(2+) and Zn(2+) were studied for their nano-particle formation at dilute conditions and gelation at higher concentrations. The large differences in dissociation rate constants of the metal ligand complexes largely determine the assembly behavior. Thermodynamically stable complexes are generated with Ni(2+) and Fe(2+) chlorides, which lead to distinct particle sizes of ∼200 nm in dilute conditions. The Co(2+) and Zn(2+) chlorides provide multiple size distributions revealing that mono and bis-complexes are present at equilibrium. Upon complexation, terpyridyl groups move to the outer sphere giving aggregates with a charged surface. At polymer concentrations above 5 wt%, crosslinking upon addition of transition metal ions provides hydrogels. Elastic hydrogels were obtained with Ni(2+), Fe(2+) and Co(2+) having storage moduli in excess of 20 kPa, whereas Zn(2+) gels are relatively viscous. Only Zn(2+) gels show a thermoreversible sol to gel transition at a temperature of 25 °C independent of polymer concentration.

5.
Bioact Mater ; 20: 53-63, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35633871

RESUMEN

A combination of the viscoelastic properties of hyaluronic acid (HA) and the elastic properties of star shaped 8-arm poly(ethylene glycol) (8-arm PEG) was used to design in-situ forming hydrogels. Hydrogels were prepared by the enzymatic crosslinking of a partially tyramine modified 8-arm PEG and a tyramine conjugated HA using horseradish peroxidase in the presence of hydrogen peroxide. Hydrogels of the homopolymer conjugates and mixtures thereof were rapidly formed within seconds under physiological conditions at low polymer and enzyme concentrations. Elastic hydrogels with high gel content (≥95%) and high storage moduli (up to 22.4 kPa) were obtained. An in vitro study in the presence of hyaluronidase (100 U/mL) revealed that with increasing PEG content the degradation time of the hybrid hydrogels increased up to several weeks, whereas hydrogels composed of only hyaluronic acid degraded within 2 weeks. Human mesenchymal stem cells (hMSCs) incorporated in the hybrid hydrogels remained viable as shown by a PrestoBlue and a live-dead assay, confirming the biocompatibility of the constructs. The production of an extracellular matrix by re-differentiation of encapsulated human chondrocytes was followed over a period of 28 days. Gene expression indicated that these highly elastic hydrogels induced an enhanced production of collagen type II. At low PEG-TA/HA-TA ratios a higher expression of SOX 9 and ACAN was observed. These results indicate that by modulating the ratio of PEG/HA, injectable hydrogels can be prepared applicable as scaffolds for tissue regeneration applications.

6.
Adv Healthc Mater ; 12(17): e2202648, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36864621

RESUMEN

Digital light processing (DLP) is an accurate and fast additive manufacturing technique to produce a variety of products, from patient-customized biomedical implants to consumer goods. However, DLP's use in tissue engineering has been hampered due to a lack of biodegradable resin development. Herein, a library of biodegradable poly(esters) capped with urethane acrylate (with variations in molecular weight) is investigated as the basis for DLP printable resins for tissue engineering. The synthesized oligomers show good printability and are capable of creating complex structures with mechanical moduli close to those of medium-soft tissues (1-3 MPa). While fabricated films from different molecular weight resins show few differences in surface topology, wettability, and protein adsorption, the adhesion and metabolic activity of NCTC clone 929 (L929) cells and human dermal fibroblasts (HDFs) are significantly different. Resins from higher molecular weight oligomers provide greater cell adhesion and metabolic activity. Furthermore, these materials show compatibility in a subcutaneous in vivo pig model. These customizable, biodegradable, and biocompatible resins show the importance of molecular tuning and open up new possibilities for the creation of biocompatible constructs for tissue engineering.


Asunto(s)
Polímeros , Ingeniería de Tejidos , Humanos , Animales , Porcinos , Ingeniería de Tejidos/métodos , Ésteres , Impresión Tridimensional
7.
Polymers (Basel) ; 14(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36297870

RESUMEN

Previously, 5% w/v hyaluronic acid-tyramine (HA-TA) and dextran-tyramine (Dex-TA) enzymatically cross-linked hybrid hydrogels were demonstrated to provide a mechanically stable environment, maintain cell viability, and promote cartilaginous-specific matrix deposition in vitro. In this study, 5% w/v hybrid hydrogels were combined with human mesenchymal stem cells (hMSCs), bovine chondrocytes (bCHs), or a combination of both in a 4:1 ratio and subcutaneously implanted in the backs of male and female nude rats to assess the performance of cell-laden hydrogels in tissue formation. Subcutaneous implantation of these biomaterials showed signs of integration of the gels within the host tissue. Histological analysis showed residual fibrotic capsules four weeks after implantation. However, enhanced tissue invasion and some giant cell infiltration were observed in the HA-TA/Dex-TA hydrogels laden with either hMSCs or bCHs but not with the co-culture. Moreover, hMSC-bCH co-cultures showed beneficial interaction with the hydrogels, for instance, in enhanced cell proliferation and matrix deposition. In addition, we provide evidence that host gender has an impact on the performance of bCHs encapsulated in HA-TA/Dex-TA hydrogels. This study revealed that hydrogels laden with different types of cells result in distinct host responses. It can be concluded that 5% w/v hydrogels with a higher concentration of Dex-TA (≥50%) laden with bCH-hMSC co-cultures are adequate for injectable applications and in situ cell delivery in cartilage regeneration approaches.

8.
Biofabrication ; 15(1)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36395500

RESUMEN

Melt extrusion-based additive manufacturing (AM) is often used to fabricate scaffolds for osteochondral (OC) regeneration. However, there are two shortcomings associated with this scaffold manufacturing technique for engineering of tissue interfaces: (a) most polymers used in the processing are bioinert, and (b) AM scaffolds often contain discrete (material) gradients accompanied with mechanically weak interfaces. The inability to mimic the gradual transition from cartilage to bone in OC tissue leads to poor scaffold performance and even failure. We hypothesized that introducing peptide gradients on the surface could gradually guide human mesenchymal stromal cell (hMSC) differentiation, from a chondrogenic towards on osteogenic phenotype. To work towards this goal, we initially manufactured poly(ϵ-caprolactone)-azide (PCLA) and PCL-maleimide (PCLM) scaffolds. The surface exposed click-type functional groups, with a surface concentration in the 102pmol cm-2regime, were used to introduce bone morphogenic protein-2 or transforming growth factor-beta binding peptide sequences to drive hMSC differentiation towards osteogenic or chondrogenic phenotypes, respectively. After 3 weeks of culture in chondrogenic medium, we observed differentiation towards hypertrophic chondrogenic phenotypes with expression of characteristic markers such as collagen X. In osteogenic medium, we observed the upregulation of mineralization markers. In basic media, the chondro-peptide displayed a minor effect on chondrogenesis, whereas the osteo-peptide did not affect osteogenesis. In a subcutaneous rat model, we observed a minimal foreign body response to the constructs, indicating biocompatibility. As proof-of-concept, we finally used a novel AM technology to showcase its potential to create continuous polymer gradients (PCLA and PCLM) across scaffolds. These scaffolds did not display delamination and were mechanically stronger compared to discrete gradient scaffolds. Due to the versatility of the orthogonal chemistry applied, this approach provides a general strategy for the field; we could anchor other tissue specific cues on the clickable groups, making these gradient scaffolds interesting for multiple interfacial tissue applications.


Asunto(s)
Células Madre Mesenquimatosas , Andamios del Tejido , Humanos , Ratas , Animales , Condrogénesis , Osteogénesis , Cartílago/metabolismo , Diferenciación Celular , Ingeniería de Tejidos/métodos
9.
Biomacromolecules ; 12(7): 2746-54, 2011 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-21630632

RESUMEN

Eight-armed poly(ethylene glycol)-poly(trimethylene carbonate) star block copolymers (PEG-(PTMC)(8)) linked by a carbamate group between the PEG core and the PTMC blocks were synthesized by the metal-free, HCl-catalyzed ring-opening polymerization of trimethylene carbonate using an amine-terminated eight-armed star PEG in dichloromethane. Although dye solubilization experiments, nuclear magnetic resonance spectroscopy, and dynamic light scattering clearly indicated the presence of aggregates in aqueous dispersions of the copolymers, no physical gelation was observed up to high concentrations. PEG-(PTMC(9))(8) was end-group-functionalized using acryloyl chloride and photopolymerized in the presence of Irgacure 2959. When dilute aqueous dispersions of PEG-(PTMC(9))(8)-Acr were UV irradiated, chemically cross-linked PEG-PTMC nanoparticles were obtained, whereas irradiation of more concentrated PEG-(PTMC(9))(8)-Acr dispersions resulted in the formation of photo-cross-linked hydrogels. Their good mechanical properties and high stability against hydrolytic degradation make photo-cross-linked PEG-PTMC hydrogels interesting for biomedical applications such as matrices for tissue engineering and controlled drug delivery systems.


Asunto(s)
Reactivos de Enlaces Cruzados/síntesis química , Dioxanos/química , Polietilenglicoles/química , Polímeros/química , Reactivos de Enlaces Cruzados/química , Estructura Molecular , Tamaño de la Partícula , Procesos Fotoquímicos , Estereoisomerismo , Propiedades de Superficie
10.
Polymers (Basel) ; 13(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068542

RESUMEN

The ideal scaffold for cartilage regeneration is expected to provide adequate mechanical strength, controlled degradability, adhesion, and integration with the surrounding native tissue. As it does this, it mimics natural ECMs functions, which allow for nutrient diffusion and promote cell survival and differentiation. Injectable hydrogels based on tyramine (TA)-functionalized hyaluronic acid (HA) and dextran (Dex) are a promising approach for cartilage regeneration. The properties of the hydrogels used in this study were adjusted by varying polymer concentrations and ratios. To investigate the changes in properties and their effects on cellular behavior and cartilage matrix formation, different ratios of HA- and dextran-based hybrid hydrogels at both 5 and 10% w/v were prepared using a designed mold to control generation. The results indicated that the incorporation of chondrocytes in the hydrogels decreased their mechanical properties. However, rheological and compression analysis indicated that 5% w/v hydrogels laden with cells exhibit a significant increase in mechanical properties after 21 days when the constructs are cultured in a chondrogenic differentiation medium. Moreover, compared to the 10% w/v hydrogels, the 5% w/v hybrid hydrogels increased the deposition of the cartilage matrix, especially in constructs with a higher Dex-TA content. These results indicated that 5% w/v hybrid hydrogels with 25% HA-TA and 75% Dex-TA have a high potential as injectable scaffolds for cartilage tissue regeneration.

11.
J Biomed Mater Res B Appl Biomater ; 109(1): 117-127, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32672384

RESUMEN

To effectively apply microwell array cell delivery devices their biodegradation rate must be tailored towards their intended use and implantation location. Two microwell array devices with distinct degradation profiles, either suitable for the fabrication of retrievable systems in the case of slow degradation, or cell delivery systems capable of extensive remodeling using a fast degrading polymer, were compared in this study. Thin films of a poly(ethylene glycol)-poly(butylene terephthalate) (PEOT-PBT) and a poly(ester urethane) were evaluated for their in vitro degradation profiles over 34 weeks incubation in PBS at different pH values. The PEOT-PBT films showed minimal in vitro degradation over time, while the poly(ester urethane) films showed extensive degradation and fragmentation over time. Subsequently, microwell array cell delivery devices were fabricated from these polymers and intraperitoneally implanted in Albino Oxford rats to study their biocompatibility over a 12-week period. The PEOT-PBT implants shown to be capable to maintain the microwell structure over time. Implants provoked a foreign body response resulting in multilayer fibrosis that integrated into the surrounding tissue. The poly(ester urethane) implants showed a loss of the microwell structures over time, as well as a fibrotic response until the onset of fragmentation, at least 4 weeks post implantation. It was concluded that the PEOT-PBT implants could be used as retrievable cell delivery devices while the poly(ester urethane) implants could be used for cell delivery devices that require remodeling within a 4-12 week period.


Asunto(s)
Materiales Biocompatibles/química , Poliésteres/química , Polietilenglicoles/química , Poliuretanos/química , Andamios del Tejido/química , Animales , Biodegradación Ambiental , Humanos , Técnicas In Vitro , Fenómenos Mecánicos , Pruebas Mecánicas , Modelos Animales , Tereftalatos Polietilenos/química , Prótesis e Implantes , Ratas , Regeneración , Resistencia a la Tracción , Ingeniería de Tejidos
12.
Adv Mater ; 33(42): e2102660, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34476848

RESUMEN

Cell-matrix interactions govern cell behavior and tissue function by facilitating transduction of biomechanical cues. Engineered tissues often incorporate these interactions by employing cell-adhesive materials. However, using constitutively active cell-adhesive materials impedes control over cell fate and elicits inflammatory responses upon implantation. Here, an alternative cell-material interaction strategy that provides mechanotransducive properties via discrete inducible on-cell crosslinking (DOCKING) of materials, including those that are inherently non-cell-adhesive, is introduced. Specifically, tyramine-functionalized materials are tethered to tyrosines that are naturally present in extracellular protein domains via enzyme-mediated oxidative crosslinking. Temporal control over the stiffness of on-cell tethered 3D microniches reveals that DOCKING uniquely enables lineage programming of stem cells by targeting adhesome-related mechanotransduction pathways acting independently of cell volume changes and spreading. In short, DOCKING represents a bioinspired and cytocompatible cell-tethering strategy that offers new routes to study and engineer cell-material interactions, thereby advancing applications ranging from drug delivery, to cell-based therapy, and cultured meat.


Asunto(s)
Materiales Biocompatibles/química , Mecanotransducción Celular , Animales , Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/farmacología , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula , Dextranos/química , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Hidrogeles/química , Integrinas/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Oligopéptidos/química , Oxidación-Reducción , Tiramina/química
13.
Langmuir ; 26(15): 12890-6, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20666421

RESUMEN

The aggregation behavior and dynamics of poly(ethylene glycol) (PEG) and poly(lactide) (PLA) chains in a homologous series of eight-armed PEG-PLA star block copolymers ((PEG(65)-NHCO-PLA(n))(8) with n = 11, 13, and 15) in water at different concentrations and temperatures were studied by means of (1)H and (13)C NMR spectroscopy and (1)H longitudinal relaxation time analysis. The state of water in these systems was also investigated through the combined use of (1)H and (2)H longitudinal relaxation time measurement. On the basis of the NMR experimental findings and of dynamic light scattering measurements, (PEG(65)-NHCO-PLA(n))(8) in water can be described as self-aggregated systems with quite rigid hydrophobic domains made of PLA chains and aqueous domains where both PEG chains and water molecules undergo fast dynamics. A smaller number of rigid domains was found for (PEG(65)-NHCO-PLA(11))(8) with respect to the homologous copolymers with longer PLA chains. At low concentrations, the PLA domains are mainly formed by chains belonging to the same molecule, thus giving rise to unimolecular micelles. At intermediate concentrations, that is, above the critical association concentration (CAC) but below the critical gel concentration (CGC), nanogels are formed by interconnection of several PLA domains through shared unimers. Above the CGC, the network is extended to the entire system, giving rise to macroscopic gels. In all cases, a fraction of PLA chains remains quite mobile and exposed to water due to topological constraints of the star architecture.


Asunto(s)
Polietilenglicoles/química , Polietileneimina/química , Espectroscopía de Resonancia Magnética , Nanogeles , Dispersión de Radiación , Temperatura
14.
Biomacromolecules ; 11(1): 224-32, 2010 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-19938809

RESUMEN

Water-soluble eight-armed poly(ethylene glycol)-poly(l-lactide) star block copolymers linked by an amide or ester group between the PEG core and the PLA blocks (PEG-(NHCO)-(PLA)(8) and PEG-(OCO)-(PLA)(8)) were synthesized by the stannous octoate catalyzed ring-opening polymerization of l-lactide using an amine- or hydroxyl-terminated eight-armed star PEG. At concentrations above the critical gel concentration, thermosensitive hydrogels were obtained, showing a reversible single gel-to-sol transition. At similar composition PEG-(NHCO)-(PLA)(8) hydrogels were formed at significantly lower polymer concentrations and had higher storage moduli. Whereas the hydrolytic degradation/dissolution of the PEG-(OCO)-(PLA)(8) takes place by preferential hydrolysis of the ester bond between the PEG and PLA block, the PEG-(NHCO)-(PLA)(8) hydrogels degrade through hydrolysis of ester bonds in the PLA main chain. Because of their relatively good mechanical properties and slow degradation in vitro, PEG-(NHCO)-(PLA)(8) hydrogels are interesting materials for biomedical applications such as controlled drug delivery systems and matrices for tissue engineering.


Asunto(s)
Amidas/química , Ésteres/química , Hidrogeles/química , Poliésteres/química , Polietilenglicoles/química , Polímeros/química , Materiales Biocompatibles , Espectroscopía de Resonancia Magnética , Reología
15.
Int J Biol Macromol ; 144: 837-846, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31715235

RESUMEN

Platelet lysate (PL), a blood product that contains high concentrations of growth factors (GFs), can be considered as a cost-effective source of multiple GFs. In this study, hyaluronic acid (HA) based microgels were developed for delivery of PL proteins. Spherical microgel were prepared using a water in oil emulsion method. First, hyaluronic acid was grafted with tyramine groups, after which prepared microdroplets were crosslinked via an enzymatic reaction in the presence of hydrogen peroxide and horseradish peroxidase. Because of electrostatic interactions, these microgels are promising carriers for positively charged proteins entrapment like most of the GFs. When microgels are incubated in PL solution, protein loading takes place which is mainly governed by nonspecific adsorption of plasma proteins. Although this hampered loading efficiency, loading could be increased by repeated washing and incubation steps. The loaded microgels presented a sustained release of PL growth factors for a period of two weeks. When PL enriched microgels were embedded in a HA bulk hydrogel, cell proliferation was higher compared to constructs without microgels. These findings suggest that the developed microgels are a potential candidate for sustained delivery of PL growth factors and present a solution to the issue of their short half-lives in vivo.


Asunto(s)
Plaquetas/citología , Portadores de Fármacos/química , Ácido Hialurónico/química , Microgeles/química , Ingeniería de Tejidos , Liberación de Fármacos , Humanos
16.
Chemistry ; 15(38): 9836-45, 2009 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-19691068

RESUMEN

Synthetic routes to aluminium ethyl complexes supported by chiral tetradentate phenoxyamine (salan-type) ligands [Al(OC(6)H(2)(R-6-R-4)CH(2))(2){CH(3)N(C(6)H(10))NCH(3)}-C(2)H(5)] (4, 7: R=H; 5, 8: R=Cl; 6, 9: R=CH(3)) are reported. Enantiomerically pure salan ligands 1-3 with (R,R) configurations at their cyclohexane rings afforded the complexes 4, 5, and 6 as mixtures of two diastereoisomers (a and b). Each diastereoisomer a was, as determined by X-ray analysis, monomeric with a five-coordinated aluminium central core in the solid state, adopting a cis-(O,O) and cis-(Me,Me) ligand geometry. From the results of variable-temperature (VT) (1)H NMR in the temperature range of 220-335 K, (1)H-(1)H NOESY at 220 K, and diffusion-ordered spectroscopy (DOSY), it is concluded that each diastereoisomer b is also monomeric with a five-coordinated aluminium central core. The geometry is intermediate between square pyramidal with a cis-(O,O), trans-(Me,Me) ligand disposition and trigonal bipyramidal with a trans-(O,O) and trans-(Me,Me) disposition. A slow exchange between these two geometries at 220 K was indicated by (1)H-(1)H NOESY NMR. In the presence of propan-2-ol as an initiator, enantiomerically pure (R,R) complexes 4-6 and their racemic mixtures 7-9 were efficient catalysts in the ring-opening polymerization of lactide (LA). Polylactide materials ranging from isotactically biased (P(m) up to 0.66) to medium heterotactic (P(r) up to 0.73) were obtained from rac-lactide, and syndiotactically biased polylactide (P(r) up to 0.70) from meso-lactide. Kinetic studies revealed that the polymerization of (S,S)-LA in the presence of 4/propan-2-ol had a much higher polymerization rate than (R,R)-LA polymerization (k(SS)/k(RR)=10.1).


Asunto(s)
Aluminio/química , Ácido Láctico/química , Polímeros/química , Cristalografía por Rayos X , Cinética , Ligandos , Conformación Molecular , Poliésteres , Estereoisomerismo
17.
Acta Biomater ; 83: 233-244, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366137

RESUMEN

Developing scaffolds that can provide cells and biological cues simultaneously in the defect site is of interest in tissue engineering field. In this study, platelet lysate (PL) as an autologous and inexpensive source of growth factors was incorporated into a cell-laden injectable hyaluronic acid-tyramine (HA-TA) hydrogel. Subsequently, the effect of platelet lysate on cell attachment, viability and differentiation of human mesenchymal stem cell (hMSCs) toward chondrocytes was investigated. HA-TA conjugates having a degree of substitution of 20 TA moieties per 100 disaccharide units were prepared and crosslinked in the presence of horseradish peroxidase and low concentrations of hydrogen peroxide. The storage moduli of the gels ranged from 500 to 2000 Pa and increased with increasing polymer concentration. In contrast to a retained round shape of the cells when using pure HA-TA hydrogel, the hMSCs attached and spread out in PL enriched matrix. The enrichment of hMSCs laden HA-TA hydrogels with PL induced a cartilage like extra cellular matrix deposition in vitro. The hMSCs increasingly deposited collagen type II and proteoglycans over time. The deposition of the new extracellular matrix (ECM) is simultaneous with gel degradation and resulted ultimately in the formation of a tough dense matrix. These findings demonstrate the potential of injectable HA-TA-PL hydrogel as a cell delivery system for cartilage regeneration. STATEMENT OF SIGNIFICANCE: Cartilage tissue has limited ability to self-repair because of its avascular nature. To have an efficient cartilage tissue regeneration, we combined platelet lysate (PL), as an autologous and inexpensive source of growth factors, with an injectable hyaluronic acid tyramine (HA-TA) hydrogel scaffold. Platelet lysate had a vital role in supporting human mesenchymal stem cells (hMSCs) activities, like cell attachment, viability and proliferation in the 3D hydrogel structure. Also, the hMSCs encapsulated HA-TA induced hyaline cartilage generation when placed in chondrogenic differentiation medium. This study introduces a new system for cartilage tissue engineering, which can be injected in a minimally invasive manner and is rich with patient's own growth factors and biological cues.


Asunto(s)
Plaquetas/química , Células Inmovilizadas/metabolismo , Condrogénesis/efectos de los fármacos , Ácido Hialurónico , Hidrogeles , Células Madre Mesenquimatosas/metabolismo , Células Inmovilizadas/citología , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Células Madre Mesenquimatosas/citología
18.
Nat Commun ; 10(1): 4347, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554812

RESUMEN

Spatiotemporal control over engineered tissues is highly desirable for various biomedical applications as it emulates the dynamic behavior of natural tissues. Current spatiotemporal biomaterial functionalization approaches are based on cytotoxic, technically challenging, or non-scalable chemistries, which has hampered their widespread usage. Here we report a strategy to spatiotemporally functionalize (bio)materials based on competitive supramolecular complexation of avidin and biotin analogs. Specifically, an injectable hydrogel is orthogonally post-functionalized with desthiobiotinylated moieties using multivalent neutravidin. In situ exchange of desthiobiotin by biotin enables spatiotemporal material functionalization as demonstrated by the formation of long-range, conformal, and contra-directional biochemical gradients within complex-shaped 3D hydrogels. Temporal control over engineered tissue biochemistry is further demonstrated by timed presentation and sequestration of growth factors using desthiobiotinylated antibodies. The method's universality is confirmed by modifying hydrogels with biotinylated fluorophores, peptides, nanoparticles, enzymes, and antibodies. Overall, this work provides a facile, cytocompatible, and universal strategy to spatiotemporally functionalize materials.


Asunto(s)
Avidina/química , Materiales Biocompatibles/química , Biotina/química , Sustancias Macromoleculares/química , Animales , Anticuerpos/química , Anticuerpos/metabolismo , Avidina/metabolismo , Materiales Biocompatibles/metabolismo , Biotina/análogos & derivados , Biotina/metabolismo , Biotinilación/métodos , Línea Celular , Humanos , Hidrogeles/química , Hidrogeles/metabolismo , Sustancias Macromoleculares/metabolismo , Ratones , Nanopartículas/química , Péptidos/química , Péptidos/metabolismo , Análisis Espacio-Temporal , Ingeniería de Tejidos/métodos
19.
Biophys J ; 94(6): 2204-11, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18032556

RESUMEN

Micromechanical bending experiments using atomic force microscopy were performed to study the mechanical properties of native and carbodiimide-cross-linked single collagen fibrils. Fibrils obtained from a suspension of insoluble collagen type I isolated from bovine Achilles tendon were deposited on a glass substrate containing microchannels. Force-displacement curves recorded at multiple positions along the collagen fibril were used to assess the bending modulus. By fitting the slope of the force-displacement curves recorded at ambient conditions to a model describing the bending of a rod, bending moduli ranging from 1.0 GPa to 3.9 GPa were determined. From a model for anisotropic materials, the shear modulus of the fibril is calculated to be 33 +/- 2 MPa at ambient conditions. When fibrils are immersed in phosphate-buffered saline, their bending and shear modulus decrease to 0.07-0.17 GPa and 2.9 +/- 0.3 MPa, respectively. The two orders of magnitude lower shear modulus compared with the Young's modulus confirms the mechanical anisotropy of the collagen single fibrils. Cross-linking the collagen fibrils with a water-soluble carbodiimide did not significantly affect the bending modulus. The shear modulus of these fibrils, however, changed to 74 +/- 7 MPa at ambient conditions and to 3.4 +/- 0.2 MPa in phosphate-buffered saline.


Asunto(s)
Biofisica/métodos , Colágeno Tipo I/química , Reactivos de Enlaces Cruzados/química , Animales , Anisotropía , Bovinos , Colágeno/química , Diseño de Equipo , Matriz Extracelular/metabolismo , Colágenos Fibrilares/química , Microscopía de Fuerza Atómica , Modelos Estadísticos , Presión , Estrés Mecánico , Temperatura
20.
Biomaterials ; 29(8): 955-62, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18082253

RESUMEN

The mechanical properties of single electrospun collagen fibers were investigated using scanning mode bending tests performed with an AFM. Electrospun collagen fibers with diameters ranging from 100 to 600 nm were successfully produced by electrospinning of an 8% w/v solution of acid soluble collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFP). Circular dichroism (CD) spectroscopy showed that 45% of the triple helical structure of collagen molecules was denatured in the electrospun fibers. The electrospun fibers were water soluble and became insoluble after cross-linking with glutaraldehyde vapor for 24h. The bending moduli and shear moduli of both non- and cross-linked single electrospun collagen fibers were determined by scanning mode bending tests after depositing the fibers on glass substrates containing micro-channels. The bending moduli of the electrospun fibers ranged from 1.3 to 7.8 GPa at ambient conditions and ranged from 0.07 to 0.26 MPa when immersed in PBS buffer. As the diameter of the fibrils increased, a decrease in bending modulus was measured clearly indicating mechanical anisotropy of the fiber. Cross-linking of the electrospun fibers with glutaraldehyde vapor increased the shear modulus of the fiber from approximately 30 to approximately 50 MPa at ambient conditions.


Asunto(s)
Colágeno Tipo I/química , Electroquímica/métodos , Algoritmos , Anisotropía , Dicroismo Circular , Reactivos de Enlaces Cruzados/química , Glutaral/química , Mecánica , Microscopía Electrónica de Rastreo , Propanoles/química , Resistencia al Corte , Estrés Mecánico , Propiedades de Superficie , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA